Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T23:13:03.960Z Has data issue: false hasContentIssue false

Major physicochemical and antioxidant changes during peach-palm(Bactris gasipaes H.B.K.) flour processing

Published online by Cambridge University Press:  26 October 2012

Carolina Rojas-Garbanzo*
Affiliation:
CITA-UCR, 11501–2060 San José, Costa Rica,. [email protected], [email protected]
Ana Mercedes Pérez
Affiliation:
CITA-UCR, 11501–2060 San José, Costa Rica,. [email protected], [email protected]
María Lourdes Pineda Castro
Affiliation:
Esc. Tecnol. Aliment., UCR, 11501–2060 San José, Costa Rica,; [email protected]
Fabrice Vaillant
Affiliation:
CIRAD-Persyst, UMR 95 Qualisud, TA B-95 / 16, 73 rue Jean-François Breton, F-34398 Montpellier cedex 5, France,; [email protected]
*
* Correspondence and reprints
Get access

Abstract

Introduction. Several studies have demonstrated that foodprocessing affects nutrients such as bioactive compounds, protein, starch, fat, fiber,minerals and antioxidant capacity. Our study examined how heat changes the physicochemicalcomposition and antioxidant capacity of peach-palm fruit (Bactrisgasipaes H.B.K.) during flour production. Materials and methods.Five commercial batches of fruit were assessed for total contents of phenolic compoundsand carotenoids, and hydrophilic oxygen radical absorbance capacity (H-ORAC). The fruitwas then cooked and eventually processed into flour. Results and discussion.No significant changes were found for contents of fat, protein, starch and dietary fiberduring flour production. Cooked peach-palm fruit is a source of Mg, Mn, Cu and K, with100 g of fruit containing between 5% and 13.5% of the recommended daily intake. Cookingalso increased carotenoids by 17%, thus helping to compensate for the 28% loss duringdrying. No stage of processing affected polyphenol contents or H-ORAC.Conclusion. Because of its high bioactive compound content, peach-palmflour shows potential for use in the development of functional foods.

Type
Original article
Copyright
© 2012 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

De Rosso, V.V., Mercadante, A.Z., Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits, J. Agric. Food Chem. 55 (2007) 50625072.CrossRefGoogle ScholarPubMed
De Sá, M., Rodríguez-Amaya, D., Carotenoid composition of cooked green vegetables from restaurants, Food Chem. 83 (2003) 595600.CrossRefGoogle Scholar
Leterme, P., Buldgen, A., Estrada, F., Londoño, A.M., Mineral content of tropical fruits and unconventional foods of the Andes and the rain forest of Colombia, Food Chem. 95 (2006) 644652.CrossRefGoogle Scholar
Vaillant, F., Pérez, A., Dávila, I., Dornier, M., Reynes, M., Colorant and antioxidant properties of red-purple pitahaya (Hylocereus sp.), Fruits 60 (2005) 312.CrossRefGoogle Scholar
Prasad, K.N., Chew, L.Y., Khoo, H.E., Yang, B., Azlan, A., Ismail, A., Carotenoids and antioxidant capacities from Canarium odontophyllum Miq. Fruit, Food Chem. 124 (2011) 15491555.CrossRefGoogle Scholar
Fahrasmane, L., Ganou, B., Aurore, G., Harnessing the health benefits of plant biodiversity originating from the American tropics in the diet, Fruits 62 (2007) 213222. CrossRefGoogle Scholar
Georgé, S., Brat, P., Alter, P., Amiot, M., Rapid determination of polyphenols and vitamin C in plant-derived products, J. Agric. Food Chem. 53 (2005) 13701373.CrossRefGoogle ScholarPubMed
Suja, K., Jalayekshmy, A., Arumughan, C., Free radical scavenging behaviour of antioxidant compounds of sesame ( Sesamun indicum L.) in DPPH system, J. Agric. Food Chem. 52 (2004) 912915.CrossRefGoogle Scholar
Brown, M., Ferruzzi, M., Nguyen, M., Cooper, D., Eldridge, A., Schwartz, S., White, W., Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduce salad dressing as measured with electrochemical detection, Am. J. Clin. Nutr. 80 (2004) 396403.Google ScholarPubMed
Rodríguez-Amaya, D., Assessment of the provitamin A contents of foods – the Brazilian experience, J. Food Compos. Anal. 9 (1996) 196230.CrossRefGoogle Scholar
Wrolstad R.E., Bioactive food compounds, in: Wrolstad R.E., Acree T., Decker E., Renner M., Reid D., Schwartz S., Shoemaker C., Smith D., Sporns P. (Eds.), Handbook of food analysis (Vol. 2), Wiley–Interscience, New Jersey, U.S.A., 1994.
Pérez-Mateos, M., Bravo, L., Goya, L., Gómez-Guillén, C., Montero, P., Quercetin properties as a functional ingredient in omega-3-enriched fish gels fed to rats, J. Sci. Food Agr. 85 (2005) 16511659.CrossRefGoogle Scholar
Jatunov, S., Quesada, S., Díaz, C., Murillo, E., Carotenoid composition and antioxidant activity of the raw and boiled fruit mesocarp of six varieties of Bactris gasipaes, Arch. Latinoam. Nutr. 60 (2010) 99104.Google ScholarPubMed
Rojas-Garbanzo, C., Pérez, A.M., Bustos-Carmona, J., Vaillant, F., Identification and quantification of carotenoids by HPLC-DAD during the process of peach palm (Bactris gasipaes H.B.K.) flour, Food Res. Int. 44 (2011) 23772384.CrossRefGoogle Scholar
Contreras-Calderón, J., Calderón-Jaimes, L., Guerra-Hernández, E., García-Villanova, B., Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia, Food Res. Int. 44 (7) (2010) 20472053, http://dx.doi.org/10.1016/j.foodres.2010.11.003.CrossRefGoogle Scholar
Clement, C., Weber, J.C., Van Leeuwen, C., Astorga, D.M., Cole, L.A., Arguello, H., Why extensive research and development did not promote use of peach palm fruit in Latin America, Agrofor. Syst. 61 (2004) 195206.Google Scholar
Yuyama, L., Aguiar, J., Yuyama, K., Clement, C., Macedo, S., Favaro, D., Afonso, C., Vasconcellos, M., Pimentel, S., Badolato, E., Vannuncchi, H., Chemical composition of the fruit mesocarp of three peach palm (Bactris gasipaes) populations grown in Central Amazonia, Brazil, Int. J. Food Sci. Nutr. 54 (2003) 4956. Google Scholar
Blanco-Metzler, A., Montero-Campos, M., Fernández-Piedra, M., Mora Urpí J., Pejibaye palm fruit contribution to human nutrition, Principes 36 (2) (1992) 6669.Google Scholar
Anon., Official methods of analysis, Assoc. Off. Anal. Chem. (16th ed), AOAC Int., Maryland, U.S.A., 1999.
Jones J.B., Wolfe B., Mills H.A., Plant analysis handbook: A practical sampling, preparation, analysis and interpretation guide, Micro-Macro Publ., Athens, U.S.A., 1991.
Schweizer, S.L., Coward, H.L., Vásquez, A.M., Metodología para análisis de suelos, plantas y aguas, Minist. Agric. Costa Rica, Bol. Téc. 68 (1980) 32.Google Scholar
Southgate D.A.T., Determination of food carbohydrates, Elsevier Sci. Publ., Barking, U.K., 1991.
Schiedt K., Liaaen-Jensen S., Isolation and analysis, in: Britton G., Liaaen-Jensen S., Pfander H. (Eds.), Carotenoids: Isolation and analysis (Vol. 1A), Birkhäuser Verlag, Basel, Switz., 1995.
Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J., Prior, R., High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handing system coupled with a microplate fluorescence reader in 96-well format, J. Agric. Food Chem. 50 (2002) 44374444.CrossRefGoogle Scholar
Gonnet, J., Colour effects of copigmentation of anthocyanins revisited – I.A colorimetric definition using the CIELAB scale, Food Chem. 63 (1998) 409441.CrossRefGoogle Scholar
Fernández-Piedra, M., Blanco-Metzler, A., Mora-Urpí, J., Contenido de ácidos grasos en cuatro poblaciones de pejibaye, Bactris gasipaes (Palmae), Rev. Biol. Trop. 43 (1995) 6166.Google Scholar
Pénicaud, C., Achir, N., Dhuique-Mayer, C., Dornier, M., Bohuon, P., Degradation of β-carotene during fruit and vegetables processing or storage: reactions mechanisms and kinetics aspects: a review, Fruits 66 (2011) 417440.CrossRefGoogle Scholar
Anon., Standard for wheat flour CODEX-STAN 152-1895 (Rev.1 – 1995), Codex Alimentarius (OMS/FAO), Washington, D.C, U.S.A., 1995.
Clement C.R., Pejibaye Bactris gasipaes (Palmae), in: Smartt J., Simmonds N.W., Evolution of crop plants (2nd ed.), Longman, London, U.K., 1995.
Boye, J., Zare, F., Pletch, A., Pulse protein: processing, characterization, functional properties and application in food and feed, Food Res. Int. 43 (2) (2010) 414431.CrossRefGoogle Scholar
Anon., Guidelines on nutritional labeling CAC/GL2-1895, Codex Alimentarius (OMS/FAO), Washington, D.C, U.S.A., 2011.
Nicoli, M.C., Anese, M., Parpinel, M., Influence of processing on the antioxidant properties of fruit and vegetables, Trends Food Sci. Tech. 10 (1999) 94100.CrossRefGoogle Scholar
Manach, C., Scalbert, A., Morand, C., Rémésy, C., Jiménez, L., Polyphenols: food sources and bioavailability, Am. J. Clin. Nutr. 79 (2004) 727747.Google ScholarPubMed
Miglio, C., Chiavaro, E., Visconti, A., Fogliano, V., Pellegrini, N., Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables, J. Agric. Food Chem. 56 (2008) 139147.CrossRefGoogle ScholarPubMed
Scott, K.J., Rodríguez-Amaya, D., Pro-vitamin A carotenoid conversion factors retinol equivalents – fact or fiction?, Food Chem. 69 (2000) 125127.CrossRefGoogle Scholar
Almeida, E., Arroxelas, V., Sucupira, M., Polyphenol, ascorbic acid and total carotenoids in common fruits and vegetables, Braz. J. Food Tech. 2 (2006) 8994. Google Scholar
Gancel, A.L., Feneuil, A., Acosta, O., Pérez, A.M., Vaillant, F., Impact of industrial processing and storage on major polyphenols and the antioxidant capacity of tropical highland blackberry (Rubus adenotrichus), Food Res. Int. 44 (2010) 2243251.CrossRefGoogle Scholar
Wu, X., Beecher, G., Holden, J., Haytowitz, D., Gebhardt, S., Prior, R., Lipophilic and hydrophilic antioxidant capacities of common foods in the United States, J. Agric. Food Chem. 52 (2004) 40264037.CrossRefGoogle Scholar
Aguilera, Y., Estrella, I., Benítez, V., Esteban, R.M., Martín-Cabrejas, M.A., Bioactive phenolic compounds and functional properties of dehydrated bean flours, Food Res. Int. 44 (2011) 774780.CrossRefGoogle Scholar