Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-29T01:30:41.006Z Has data issue: false hasContentIssue false

Chemical composition, vitamins and minerals of a new cultivar of lychee (Litchi chinensis cv. Tailandes) grown in Brazil

Published online by Cambridge University Press:  03 October 2014

Get access

Abstract

Introduction. Different cultivars of lychee are produced all around the world and to date no information has been published on the nutritional value of cv. Tailandes, which is a new lychee cultivar introduced into Brazil and other tropical countries. Our study performed a pioneering evaluation of the physical and chemical characteristics, carotenoids, vitamins, and minerals in pulp of fruit of this cultivar. Materials and methods. Titratable acidity was determined by volumetric neutralization, pH by potentiometry, soluble solids by refractometry, moisture by gravimetry after oven drying, ash by calcination in a muffle furnace, proteins by the micro-Kjeldahl method, dietary fibers by the gravimetric non-enzymatic method and lipids by gravimetry after extraction in ethyl ether. Vitamin C (ascorbic and dehydroascorbic acids) and carotenoids (a-carotene, b-carotene, b-cryptoxanthin and lycopene) were analyzed by high-performance liquid chromatography (HPLC) with diode array detection, vitamin E (a-, b-, g- and d-tocopherols and tocotrienols) was analyzed by HPLC with fluorescence detection, and fourteen minerals were analyzed by atomic absorption spectrometry in inductively coupled plasma. Results and discussion. The lychee cv. Tailandes showed high pulp yield (59.0%), moisture (80.7 mg×100 g–1) and dietary fiber (2.2 g×100 g–1), and a low total energy value (70.2 kcal×100 g–1). It presented no carotenoids, but was an excellent source of vitamin C (34.7 mg×100 g–1). The total vitamin E content was 117.0 g×100 g–1. Pulp of lychee cv. Tailandes was shown to be a source of iron (0.86 mg×100 g–1) and magnesium (12.90 mg×100 g–1), a good source of copper (0.12 mg×100 g–1) and an excellent source of potassium (1067.33 mg×100 g–1). Conclusion. The lychee cv. Tailandes showed high pulp yield and low total energy. The pulp is a source of dietary fiber, vitamin C, iron, magnesium, copper and potassium.

Type
Original article
Copyright
© 2014 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hajare, S.N., Saxena, S., Kumar, S., Wadhawan, S., More, V., Mishra, B.B., Narayan Parte, M., Gautam, S., Sharma, A., Quality profile of litchi (Litchi chinensis) cultivars from India and effect of radiation processing, Radiat. Phys. Chem. 79 (2010) 9941004.CrossRefGoogle Scholar
Jiang, Y., Duan, X., Joyce, D., Zhang, Z., Li, J., Advances in understanding of enzymatic browning in harvested litchi fruit, Food Chem. 88 (2004) 443446.CrossRefGoogle Scholar
Wei B., Huang L., Teng J., Jia M., Chemical compositional characterization of ten litchi cultivars, 2011 Int. Conf. on New Technology of Agricultural Engineering (ICAE), Zibo, Chine, 2011.
Chyau, C.-C., Ko, P.-T., Chang, C.-H., Mau, J.-L., Free and glycosidically bound aroma compounds in lychee (Litchi chinensis Sonn.), Food Chem. 80 (2003) 387392.CrossRefGoogle Scholar
Lima, R.A.Z., Abreu, C.M.P. de, Asmar, S.A., Corrêa, A.D., Santos, C.D. de, Embalagens e recobrimento em lichias (Litchi chinensis Sonn.) armazenadas sob condições não controladas, Ciênc. Agrotecnol. 34 (2010) 914921.CrossRefGoogle Scholar
Martins, A.B.G., Lichia, Revi. Bras. Frutic. 27 (2005) 14.Google Scholar
Lee, S.K., Kader, A.A., Preharvest and postharvest factors influencing vitamin C content of horticultural crop, Postharvest Biol. Technol. 20 (2000) 207220.CrossRefGoogle Scholar
Queiroz, E. de R., Abreu, C.M.P. de, Oliveira, K. de S., Constituintes químicos das frações de lichia in natura e submetidas à secagem: potencial nutricional dos subprodutos, Rev. Bras. Frutic. 34 (2012) 11741179.CrossRefGoogle Scholar
Chang, J.-C., Lin, T.-S., GA3 increases fruit weight in ‘Yu Her Pau’ litchi, Sci. Hortic. 108 (2006) 442443.CrossRefGoogle Scholar
Wall, M.M., Ascorbic acid and mineral composition of longan (Dimocarpus longan), lychee (Litchi chinensis) and rambutan (Nephelium lappaceum) cultivars grown in Hawaii, J. Food Compos. Anal. 19 (2006) 655663.CrossRefGoogle Scholar
Charoensiri, R., Kongkachuichai, R., Suknicom, S., Sungpuag, P., Beta-carotene, lycopene, and alpha-tocopherol contents of selected Thai fruits, Food Chem. 113 (2009) 202207.CrossRefGoogle Scholar
Anon., Normas analíticas do Instituto Adolfo Lutz, Inst. Adolfo Lutz, São Paulo, Brazil, 2005.
Anon., Official methods of analysis of the Association of Official Analytical Chemists, Assoc. Off. Anal. Chem. (AOAC), Wash., D.C., U.S.A., 1998.
Frary C.D., Johnson R.K., Energia, in: Mahan L.K., Escott-Stump S. (Eds.), Krause: alimentos, nutrição e dietoterapia, Rocca, São Paulo, Brazil, 2005.
Rodriguez-Amaya, D.B., Raymundo, L.C., Lee, T.-C., Simpson, K.L., Chichester, C.O., Carotenoid changes in ripening Momordica charantia, Ann. Bot. 40 (1976) 615624.CrossRefGoogle Scholar
Pinheiro-Sant'Ana, H.M., Stringheta, P.C., Brandão, S.C.C., Azeredo, R.M.C., Carotenoid retention and vitamin A value in carrot (Daucus carota L.) prepared by food service, Food Chem. 61 (1998) 145151.CrossRefGoogle Scholar
Campos, F.M., Ribeiro, S.M.R., Della Lucia, C.M., Pinheiro-Sant'Ana, H.M., Stringheta, P.C., Optimization of methodology to analyze ascorbic and dehydroascorbic acid in vegetables, Quím. Nova 32 (2009) 8791.CrossRefGoogle Scholar
Pinheiro-Sant'Ana, H.M., Guinazi, M., Oliveira, D.d.S., Della, Lucia C.M., Reis, B.D.L., Brandão, S.C.C., Method for simultaneous analysis of eight vitamin E isomers in various foods by high performance liquid chromatography and fluorescence detection, J. Chromatogr. A. 1218 (2011) 84968502.CrossRefGoogle ScholarPubMed
Ekholm, P., Reinivuo, H., Mattila, P., Pakkala, H., Koponen, J., Happonen, A., Hellström, J., Ovaskainen, M.-L., Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland, J. Food Compos. Anal. 20 (2007) 487495.CrossRefGoogle Scholar
Philippi S.T., Pirâmide dos alimentos: fundamentos básicos da nutrição, Manole, Barueri, Brazil, 2008.
Anon., Reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline, U.S. Inst. Med., Natl. Acad. Press, Wash., D.C., U.S.A., 1998.
Anon., Dietary Reference Intakes (DRIs): vitamin A, vitamin K, arsenic, boron, cromium, copper, iodine, iron, manganese, molybdenium, nickel, silicon, vanadium and zinc, U.S. Inst. Med., Natl. Acad. Press, Wash., D.C., U.S.A., 2001.
Anon., Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids, U.S. Inst. Med., Natl. Acad. Press, Wash., D.C., U.S.A., 2000.
Neog, M., Saikia, L., Control of post-harvest pericarp browning of litchi (Litchi chinensis Sonn.), J. Food Sci. Technol. 47 (2010) 100104.CrossRefGoogle Scholar
Anon., Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids, U.S. Inst. Med., Natl. Acad. Press, Wash., D.C., U.S.A., 2005.
Anon., Tabela Brasileira de Composição de Alimentos, Núcleo de Estudos e Pesquisa em Alimentação, NEPA-UNICAMP, Campinas, SP, Brazil, 2011.