Article contents
Pencils on Surfaces with Normal Crossings and the Kodaira Dimension of
$\overline {\mathcal {M}}_{g,n}$
Published online by Cambridge University Press: 12 April 2021
Abstract
We study smoothing of pencils of curves on surfaces with normal crossings. As a consequence we show that the canonical divisor of $\overline {\mathcal {M}}_{g,n}$ is not pseudoeffective in some range, implying that
$\overline {\mathcal {M}}_{12,6}$,
$\overline {\mathcal {M}}_{12,7}$,
$\overline {\mathcal {M}}_{13,4}$ and
$\overline {\mathcal {M}}_{14,3}$ are uniruled. We provide upper bounds for the Kodaira dimension of
$\overline {\mathcal {M}}_{12,8}$ and
$\overline {\mathcal {M}}_{16}$. We also show that the moduli space of
$(4g+5)$-pointed hyperelliptic curves
$\overline {\mathcal {H}}_{g,4g+5}$ is uniruled. Together with a recent result of Schwarz, this concludes the classification of moduli of pointed hyperelliptic curves with negative Kodaira dimension.
MSC classification
- Type
- Algebraic and Complex Geometry
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210409034940707-0988:S2050509421000281:S2050509421000281_inline11.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210409034940707-0988:S2050509421000281:S2050509421000281_inline12.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210409034940707-0988:S2050509421000281:S2050509421000281_inline13.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210409034940707-0988:S2050509421000281:S2050509421000281_inline14.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210409034940707-0988:S2050509421000281:S2050509421000281_inline15.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210409034940707-0988:S2050509421000281:S2050509421000281_inline16.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210409034940707-0988:S2050509421000281:S2050509421000281_inline17.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210409034940707-0988:S2050509421000281:S2050509421000281_inline18.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210409034940707-0988:S2050509421000281:S2050509421000281_inline19.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210409034940707-0988:S2050509421000281:S2050509421000281_inline20.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210409034940707-0988:S2050509421000281:S2050509421000281_inline21.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210409034940707-0988:S2050509421000281:S2050509421000281_inline22.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210409034940707-0988:S2050509421000281:S2050509421000281_inline23.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210409034940707-0988:S2050509421000281:S2050509421000281_inline24.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210409034940707-0988:S2050509421000281:S2050509421000281_inline25.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210409034940707-0988:S2050509421000281:S2050509421000281_inline26.png?pub-status=live)
- 2
- Cited by