Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T18:24:21.221Z Has data issue: false hasContentIssue false

$p$-DIVISIBILITY FOR COHERENT COHOMOLOGY

Published online by Cambridge University Press:  13 August 2015

BHARGAV BHATT*
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA; [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that the coherent cohomology of a proper morphism of noetherian schemes can be made arbitrarily $p$-divisible by passage to proper covers (for a fixed prime $p$). Under some extra conditions, we also show that $p$-torsion can be killed by passage to proper covers. These results are motivated by the desire to understand rational singularities in mixed characteristic, and have applications in $p$-adic Hodge theory.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author 2015

References

Abramovich, D. and Oort, F., ‘Stable maps and Hurwitz schemes in mixed characteristics’, inAdvances in Algebraic Geometry Motivated by Physics (Lowell, MA, 2000), Contemporary Mathematics, 276 (American Mathematical Society, Providence, RI, 2001), 89100.Google Scholar
Beilinson, A., ‘On the crystalline period map’, Camb. J. Math. 1(1) (2013), 151.Google Scholar
Beilinson, A., ‘p-adic periods and derived de Rham cohomology’, J. Amer. Math. Soc. 25(3) (2012), 715738.Google Scholar
Bhatt, B., ‘Annihilating the cohomology of group schemes’, Algebra Number Theory 6(7) (2012), 15611577.Google Scholar
Bhatt, B., ‘Derived splinters in positive characteristic’, Compos. Math. 148(6) (2012), 17571786.Google Scholar
Bhatt, B., ‘$p$-adic derived de Rham cohomology’, Preprint, 2012, arXiv:1204.6560.Google Scholar
Blickle, M., Schwede, K. and Tucker, K., ‘F-singularities via alterations’, Amer. J. Math. 137(1) (2015), 61109.CrossRefGoogle Scholar
Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 21 (Springer, Berlin, 1990).Google Scholar
Conrad, B., ‘Deligne’s notes on Nagata compactifications’, J. Ramanujan Math. Soc. 22(3) (2007), 205257.Google Scholar
Deligne, P., ‘Cohomologie étale’, inSéminaire de Géométrie Algébrique du Bois-Marie SGA 4[[()[]mml:mfrac[]()]][[()[]mml:mrow []()]]1[[()[]/mml:mrow[]()]] [[()[]mml:mrow []()]]2[[()[]/mml:mrow[]()]][[()[]/mml:mfrac[]()]], Lecture Notes in Mathematics, 569 (Springer, Berlin, 1977), Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier.Google Scholar
Deninger, C. and Werner, A., ‘Vector bundles on p-adic curves and parallel transport’, Ann. Sci. Éc. Norm. Supér. (4) 38(4) (2005), 553597.Google Scholar
Faltings, G. and Chai, C.-L., Degeneration of Abelian Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 22 (Springer, Berlin, 1990), With an appendix by David Mumford.Google Scholar
Grothendieck, A., ‘Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III’, Publ. Math. Inst. Hautes Études Sci. 28 (1966), 255.Google Scholar
Hochster, M., ‘Homological conjectures, old and new’, Illinois J. Math. 51(1) (2007), 151169 (electronic).Google Scholar
de Jong, A. J., ‘Smoothness, semi-stability and alterations’, Publ. Math. Inst. Hautes Études Sci. 83 (1996), 5193.Google Scholar
de Jong, A. J., ‘Families of curves and alterations’, Ann. Inst. Fourier (Grenoble) 47(2) (1997), 599621.Google Scholar
Lazarsfeld, R., Positivity in Algebraic Geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 48 (Springer, Berlin, 2004), Classical setting: line bundles and linear series.Google Scholar
Lipman, J., ‘Desingularization of two-dimensional schemes’, Ann. of Math. (2) 107(1) (1978), 151207.Google Scholar
Orgogozo, F., ‘Modifications et cycles proches sur une base générale’, Int. Math. Res. Not. IMRN 38 (2006), pages Art. ID 25315.Google Scholar
‘The Stacks Project Authors’, Stacks Project, http://stacks.math.columbia.edu, 2014.Google Scholar