Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T19:08:46.507Z Has data issue: false hasContentIssue false

ON THE REGULARITY OF SLE TRACE

Published online by Cambridge University Press:  24 August 2017

PETER K. FRIZ
Affiliation:
Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, D-10623, Berlin; [email protected]
HUY TRAN
Affiliation:
University of California, Los Angeles, Department of Mathematics, Los Angeles, CA 90095-1555, USA; [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We revisit regularity of SLE trace, for all $\unicode[STIX]{x1D705}\neq 8$, and establish Besov regularity under the usual half-space capacity parametrization. With an embedding theorem of Garsia–Rodemich–Rumsey type, we obtain finite moments (and hence almost surely) optimal variation regularity with index $\min (1+\unicode[STIX]{x1D705}/8,2)$, improving on previous works of Werness, and also (optimal) Hölder regularity à la Johansson Viklund and Lawler.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2017

References

Beffara, V., ‘The dimension of the SLE curves’, Ann. Probab. 36(4) (2008), 14211452.CrossRefGoogle Scholar
Cass, T. and Friz, P., ‘Densities for rough differential equations under Hörmander’s condition’, Ann. of Math. (2) 171(3) (2010), 21152141.CrossRefGoogle Scholar
Cass, T., Hairer, M., Litterer, C. and Tindel, S., ‘Smoothness of the density for solutions to Gaussian rough differential equations’, Ann. Probab. 43(1) (2015), 188239.CrossRefGoogle Scholar
Friz, P. K. and Prömel, D. J., ‘Rough path metrics on a Besov–Nikolskii type scale’, Trans. Amer. Math. Soc. to appear, Preprint, 2016, arXiv:1609.03132v2.Google Scholar
Friz, P. and Victoir, N., ‘A variation embedding theorem and applications’, J. Funct. Anal. 239(2) (2006), 631637.CrossRefGoogle Scholar
Johansson Viklund, F. and Lawler, G. F., ‘Optimal Hölder exponent for the SLE path’, Duke Math. J. 159(3) (2011), 351383.Google Scholar
Johansson Viklund, F., Rohde, S. and Wong, C., ‘On the continuity of SLE𝜅 in 𝜅’, Probab. Theory Related Fields 159(3–4) (2014), 413433.Google Scholar
Lawler, G. F., Conformally Invariant Processes in the Plane, Mathematical Surveys and Monographs, 114 (American Mathematical Society, Providence, RI, 2005).Google Scholar
Lawler, G. F., ‘Fractal and multifractal properties of Schramm–Loewner evolution’, inProbability and Statistical Physics in Two and More Dimensions, Clay Mathematics Proceedings, 15 (American Mathematical Society, Providence, RI, 2012), 277318.Google Scholar
Lawler, G. F. and Rezaei, M. A., ‘Minkowski content and natural parameterization for the Schramm-Loewner evolution’, Ann. Probab. 43(3) (2015), 10821120.CrossRefGoogle Scholar
Lawler, G. F., Schramm, O. and Werner, W., ‘Conformal invariance of planar loop-erased random walks and uniform spanning trees’, Ann. Probab. 32(1B) (2004), 939995.CrossRefGoogle Scholar
Lawler, G. F. and Sheffield, S., ‘A natural parametrization for the Schramm–Loewner evolution’, Ann. Probab. 39(5) (2011), 18961937.CrossRefGoogle Scholar
Lawler, G. F. and Werness, B. M., Personal communication.Google Scholar
Lind, J. R., ‘Hölder regularity of the SLE trace’, Trans. Amer. Math. Soc. 360(7) (2008), 35573578.CrossRefGoogle Scholar
Rohde, S. and Schramm, O., ‘Basic properties of SLE’, Ann. of Math. (2) 161(2) (2005), 883924.CrossRefGoogle Scholar
Werness, B. M., ‘Regularity of Schramm–Loewner evolutions, annular crossings, and rough path theory’, Electron. J. Probab. 17(81) (2012), 121.CrossRefGoogle Scholar