Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T01:52:14.113Z Has data issue: false hasContentIssue false

A NOTE ON RICH LINES IN TRULY HIGH DIMENSIONAL SETS

Published online by Cambridge University Press:  13 January 2016

JOSHUA ZAHL*
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA, USA; [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We modify an argument of Hablicsek and Scherr to show that if a collection of points in $\mathbb{C}^{d}$ spans many $r$ -rich lines, then many of these lines must lie in a common $(d-1)$ -flat. This is closely related to a previous result of Dvir and Gopi.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author 2016

References

Barone, S. and Basu, S., ‘Refined bounds on the number of connected components of sign conditions on a variety’, Discrete Comput. Geom. 47(3) (2012), 577597.Google Scholar
Bochnak, J., Coste, M. and Roy., M.-F., Real Algebraic Geometry (Springer, Berlin, 1998).Google Scholar
Dvir, Z. and Gopi, S., ‘On the number of rich lines in truly high dimensional sets’, 31st International Symposium on Computational Geometry (SoCG 2015), Leibniz International Proceedings in Informatics (LIPIcs), 34 , 584598. (2015).Google Scholar
Guth, L. and Katz., N., ‘Algebraic methods in discrete analogues of the Kakeya problem.’, Adv. Math. 225 (2010), 28282839.CrossRefGoogle Scholar
Guth, L. and Katz., N., ‘On the Erdős distinct distance problem in the plane’, Ann. of Math. (2) 181 (2015), 155190.CrossRefGoogle Scholar
Hablicsek, M. and Scherr, Z., ‘On the number of rich lines in high dimensional real vector spaces’, 2014, preprint arXiv:1412.7025.Google Scholar
Harris, J., Algebraic Geometry: A First Course, Graduate Texts in Mathematics, 133 (Springer, New York, 1995).Google Scholar
Sheffer, A. and Zahl, J., ‘Point-curve incidences in the complex plane’, 2015, preprint arXiv:1502.07003.Google Scholar
Solymosi, J. and Tao, T., ‘An incidence theorem in higher dimensions’, Discrete Comput. Geom. 48(2) (2012), 255280.Google Scholar
Szemerédi, E. and Trotter, W. T. Jr., ‘Extremal problems in discrete geometry’, Combinatorica 3(3–4) (1983), 381392.Google Scholar
Tóth, C., ‘The Szemerédi–Trotter theorem in the complex plane’, Combinatorica 35(1) (2015), 95126.Google Scholar
Zahl., J., ‘A Szeméredi–Trotter type theorem in ℝ4 ’, Discrete Comput. Geom. 54(3) (2015), 513572.CrossRefGoogle Scholar