Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T06:37:15.007Z Has data issue: false hasContentIssue false

NORMAL FUNCTIONS FOR ALGEBRAICALLY TRIVIAL CYCLES ARE ALGEBRAIC FOR ARITHMETIC REASONS

Published online by Cambridge University Press:  16 October 2019

JEFFREY D. ACHTER
Affiliation:
Colorado State University, Department of Mathematics, Fort Collins, CO 80523, USA; [email protected]
SEBASTIAN CASALAINA-MARTIN
Affiliation:
University of Colorado, Department of Mathematics, Boulder, CO 80309, USA; [email protected]
CHARLES VIAL
Affiliation:
Universität Bielefeld, Fakultät für Mathematik, Germany; [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For families of smooth complex projective varieties, we show that normal functions arising from algebraically trivial cycle classes are algebraic and defined over the field of definition of the family. In particular, the zero loci of those functions are algebraic and defined over such a field of definition. This proves a conjecture of Charles.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2019

References

Achter, J. D., Casalaina-Martin, S. and Vial, C., ‘A functorial approach to regular homomorphisms’, in preparation.Google Scholar
Achter, J. D., Casalaina-Martin, S. and Vial, C., ‘On descending cohomology geometrically’, Compos. Math. 153(7) (2017), 14461478.Google Scholar
Achter, J. D., Casalaina-Martin, S. and Vial, C., ‘Distinguished models of intermediate Jacobians’, J. Inst. Math. Jussieu (2018), 128.Google Scholar
Achter, J. D., Casalaina-Martin, S. and Vial, C., ‘Parameter spaces for algebraic equivalence’, Int. Math. Res. Not. IMRN (6) (2019), 18631893.Google Scholar
Brosnan, P. and Pearlstein, G., ‘The zero locus of an admissible normal function’, Ann. of Math. (2) 170(2) (2009), 883897.Google Scholar
Brosnan, P. and Pearlstein, G., ‘On the algebraicity of the zero locus of an admissible normal function’, Compos. Math. 149(11) (2013), 19131962.Google Scholar
Bloch, S. and Srinivas, V., ‘Remarks on correspondences and algebraic cycles’, Amer. J. Math. 105(5) (1983), 12351253.Google Scholar
Charles, F., ‘On the zero locus of normal functions and the étale Abel–Jacobi map’, Int. Math. Res. Not. IMRN (12) (2010), 22832304.Google Scholar
Charles, F., ‘Progrès récents sur les fonctions normales (d’après Green–Griffiths, Brosnan–Pearlstein, M. Saito, Schnell …)’, Astérisque (361, Exp. No. 1063, viii) (2014), 149181.Google Scholar
Faltings, G. and Chai, C.-L., ‘Degeneration of abelian varieties’, inErgebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 22 (Springer, Berlin, 1990), With an appendix by David Mumford.Google Scholar
Green, M., Griffiths, P. and Kerr, M., ‘Néron models and limits of Abel–Jacobi mappings’, Compos. Math. 146(2) (2010), 288366.Google Scholar
Green, M. L., ‘The spread philosophy in the study of algebraic cycles’, inHodge Theory, Math. Notes, vol. 49 (Princeton University Press, Princeton, NJ, 2014), 449468.Google Scholar
Grothendieck, A., Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962.], (Secrétariat mathématique, Paris, 1962).Google Scholar
Grothendieck, A., ‘Revêtements étales et groupe fondamental’, inSéminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Lecture Notes in Mathematics, 224 (Springer, Berlin–New York, 1971).Google Scholar
Hain, R. M., ‘Torelli groups and geometry of moduli spaces of curves’, inCurrent Topics in Complex Algebraic Geometry (Berkeley, CA, 1992/93), Math. Sci. Res. Inst. Publ., 28 (Cambridge University Press, Cambridge, 1995), 97143.Google Scholar
Kleiman, S. L., ‘The Picard scheme’, inFundamental Algebraic Geometry, Mathematical Surveys and Monographs, 123 (American Mathematical Society, Providence, RI, 2005), 235321.Google Scholar
Kerr, M. and Pearlstein, G., ‘An exponential history of functions with logarithmic growth’, inTopology of Stratified Spaces, Mathematical Sciences Research Institute Publications, 58 (Cambridge University Press, Cambridge, 2011), 281374.Google Scholar
Peters, C. A. M. and Steenbrink, J. H. M., ‘Mixed Hodge structures’, inErgebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 52 (Springer, Berlin, 2008).Google Scholar
Saito, M., ‘Admissible normal functions’, J. Algebr. Geom. 5(2) (1996), 235276.Google Scholar
Saito, M., ‘Hausdorff property of the Neron models of Green, Griffiths and Kerr’, March 2008.Google Scholar
Saito, M., ‘Normal functions and spread of zero locus’, inRecent Advances in Hodge Theory, London Mathematical Society Lecture Note Series, 427 (Cambridge University Press, Cambridge, 2016), 264274.Google Scholar
Schnell, C., ‘Complex analytic Néron models for arbitrary families of intermediate Jacobians’, Invent. Math. 188(1) (2012), 181.Google Scholar
Vial, C., ‘Algebraic cycles and fibrations’, Doc. Math. 18 (2013), 15211553.Google Scholar
Voisin, C., ‘The Griffiths group of a general Calabi–Yau threefold is not finitely generated’, Duke Math. J. 102(1) (2000), 151186.Google Scholar
Voisin, C., ‘Hodge loci’, inHandbook of Moduli. Vol. III, Advanced Lectures in Mathematics (ALM), 26 (Int. Press, Somerville, MA, 2013), 507546.Google Scholar