Article contents
Hyperbolic tessellations and generators of
${K}_{\textbf {3}}$ for imaginary quadratic fields
Published online by Cambridge University Press: 24 May 2021
Abstract
We develop methods for constructing explicit generators, modulo torsion, of the $K_3$-groups of imaginary quadratic number fields. These methods are based on either tessellations of hyperbolic
$3$-space or on direct calculations in suitable pre-Bloch groups and lead to the very first proven examples of explicit generators, modulo torsion, of any infinite
$K_3$-group of a number field. As part of this approach, we make several improvements to the theory of Bloch groups for
$ K_3 $ of any field, predict the precise power of
$2$ that should occur in the Lichtenbaum conjecture at
$ -1 $ and prove that this prediction is valid for all abelian number fields.
- Type
- Algebra
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline8.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline9.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline10.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline11.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline12.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline13.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline14.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline15.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline16.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline17.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline18.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline19.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline20.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline21.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline22.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline23.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline24.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline25.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline26.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline27.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline28.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline29.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline30.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline31.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline32.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline33.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline34.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline35.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline36.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline37.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline38.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline39.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline40.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline41.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline42.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline43.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline44.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline45.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210521171136193-0693:S2050509421000098:S2050509421000098_inline46.png?pub-status=live)
- 2
- Cited by