Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-01T02:01:57.624Z Has data issue: false hasContentIssue false

FINE DELIGNE–LUSZTIG VARIETIES AND ARITHMETIC FUNDAMENTAL LEMMAS

Published online by Cambridge University Press:  10 December 2019

XUHUA HE
Affiliation:
Lady Shaw Building, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; [email protected]
CHAO LI
Affiliation:
Department of Mathematics, Columbia University, 2990 Broadway, New York, NY10027, USA; [email protected], [email protected]
YIHANG ZHU
Affiliation:
Department of Mathematics, Columbia University, 2990 Broadway, New York, NY10027, USA; [email protected], [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove a character formula for some closed fine Deligne–Lusztig varieties. We apply it to compute fixed points for fine Deligne–Lusztig varieties arising from the basic loci of Shimura varieties of Coxeter type. As an application, we prove an arithmetic intersection formula for certain diagonal cycles on unitary and GSpin Rapoport–Zink spaces arising from the arithmetic Gan–Gross–Prasad conjectures. In particular, we prove the arithmetic fundamental lemma in the minuscule case, without assumptions on the residual characteristic.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2019

References

Bourbaki, N., ‘Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie’. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337 (Hermann, Paris, 1968).Google Scholar
Carter, R. W., ‘Wiley Classics Library’, inFinite Groups of Lie Type, Conjugacy Classes and Complex Characters (John Wiley & Sons, Ltd., Chichester, 1993), Reprint of the 1985 original, A Wiley-Interscience Publication.Google Scholar
Cho, S., ‘The basic locus of the unitary Shimura variety with parahoric level structure, and special cycles’, arXiv e-prints, 2018, arXiv:1807.09997.Google Scholar
Deligne, P. and Lusztig, G., ‘Representations of reductive groups over finite fields’, Ann. of Math. (2) 103(1) (1976), 103161.Google Scholar
Digne, F. and Michel, J., Representations of Finite Groups of Lie Type, London Mathematical Society Student Texts, 21 (Cambridge University Press, Cambridge, 1991).Google Scholar
Grothendieck, A. and Deligne, P., ‘La classe de cohomologie associée à un cycle’, inCohomologie étale, Lecture Notes in Mathematics, 569 (Springer, Berlin, 1977), 129153.Google Scholar
Gan, W. T., Gross, B. H. and Prasad, D., ‘Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups’, Astérisque (2012), 1109. Sur les conjectures de Gross et Prasad. I.Google Scholar
Görtz, U. and He, X., ‘Basic loci of Coxeter type in Shimura varieties’, Camb. J. Math. 3(3) (2015), 323353.Google Scholar
He, X., ‘The G-stable pieces of the wonderful compactification’, Trans. Amer. Math. Soc. 359(7) (2007), 30053024.Google Scholar
He, X., ‘Minimal length elements in some double cosets of Coxeter groups’, Adv. Math. 215(2) (2007), 469503.Google Scholar
He, X., ‘ G-stable pieces and partial flag varieties’, inRepresentation Theory, Contemporary Mathematics, 478 (American Mathematical Society, Providence, RI, 2009), 6170.Google Scholar
Howard, B. and Pappas, G., ‘On the supersingular locus of the GU(2, 2) Shimura variety’, Algebra Number Theory 8(7) (2014), 16591699.Google Scholar
Howard, B. and Pappas, G., ‘Rapoport–Zink spaces for spinor groups’, Compos. Math. 153(5) (2017), 10501118.Google Scholar
Kitaoka, Y., Arithmetic of Quadratic Forms, Cambridge Tracts in Mathematics, 106 (Cambridge University Press, Cambridge, 1993).Google Scholar
Kottwitz, R. E., ‘Rational conjugacy classes in reductive groups’, Duke Math. J. 49(4) (1982), 785806.Google Scholar
Kudla, S. and Rapoport, M., ‘Special cycles on unitary Shimura varieties I. Unramified local theory’, Invent. Math. 184(3) (2011), 629682.Google Scholar
Liu, Y., ‘Fourier–Jacobi cycles and arithmetic relative trace formula’, Preprint available at https://gauss.math.yale.edu/∼yl2269/FJcycle.pdf, 2018.Google Scholar
Lusztig, G., ‘A class of perverse sheaves on a partial flag manifold’, Represent. Theory 11 (2007), 122171.Google Scholar
Li, C. and Zhu, Y., ‘Remarks on the arithmetic fundamental lemma’, Algebra Number Theory 11(10) (2017), 24252445.Google Scholar
Li, C. and Zhu, Y., ‘Arithmetic intersection on GSpin Rapoport–Zink spaces’, Compos. Math. 154(7) (2018), 14071440.Google Scholar
Mihatsch, A., ‘Relative unitary RZ-spaces and the arithmetic fundamental lemma’, J. Inst. Math. Jussieu, to appear, Preprint, arXiv:1611.06520.Google Scholar
Platonov, V. and Rapinchuk, A., Algebraic Groups and Number Theory, Pure and Applied Mathematics, 139 (Academic Press, Inc., Boston, MA, 1994), Translated from the 1991 Russian original by Rachel Rowen.Google Scholar
Rapoport, M., Smithling, B. and Zhang, W., ‘On the arithmetic transfer conjecture for exotic smooth formal moduli spaces’, Duke Math. J. 166(12) (2017), 21832336.Google Scholar
Rapoport, M., Smithling, B. and Zhang, W., ‘Arithmetic diagonal cycles on unitary Shimura varieties’, arXiv e-prints, 2017, arXiv:1710.06962.Google Scholar
Rapoport, M., Terstiege, U. and Zhang, W., ‘On the arithmetic fundamental lemma in the minuscule case’, Compos. Math. 149(10) (2013), 16311666.Google Scholar
Serre, J.-P., Local Algebra, Springer Monographs in Mathematics (Springer, Berlin, 2000), Translated from the French by CheeWhye Chin and revised by the author.Google Scholar
Springer, T. A., ‘Regular elements of finite reflection groups’, Invent. Math. 25 (1974), 159198.Google Scholar
Steinberg, R., ‘Regular elements of semisimple algebraic groups’, Publ. Math. Inst. Hautes Études Sci. 25 (1965), 4980.Google Scholar
Steinberg, R., Endomorphisms of Linear Algebraic Groups, Memoirs of the American Mathematical Society, 80 (American Mathematical Society, Providence, RI, 1968).Google Scholar
Vollaard, I., ‘The supersingular locus of the Shimura variety for GU(1, s)’, Canad. J. Math. 62(3) (2010), 668720.Google Scholar
Vollaard, I. and Wedhorn, T., ‘The supersingular locus of the Shimura variety of GU(1, n - 1 II’, Invent. Math. 184(3) (2011), 591627.Google Scholar
Zhang, W., ‘On arithmetic fundamental lemmas’, Invent. Math. 188(1) (2012), 197252.Google Scholar
Zhang, W., ‘Weil representation and arithmetic fundamental lemma’, arXiv e-prints, 2019, arXiv:1909.02697.Google Scholar