Hostname: page-component-cc8bf7c57-qfg88 Total loading time: 0 Render date: 2024-12-11T22:08:51.929Z Has data issue: false hasContentIssue false

ERRATUM TO APPENDIX TO ‘2-ADIC INTEGRAL CANONICAL MODELS’

Published online by Cambridge University Press:  11 March 2020

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Erratum
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author 2020

References

Bhatt, B., Morrow, M. and Scholze, P., ‘Integral p-adic Hodge theory – announcement’, Math. Res. Lett. 22(6) (2015), 16011612.CrossRefGoogle Scholar
Bhatt, B., Morrow, M. and Scholze, P., ‘Integral p-adic Hodge theory’, Publ. Math. Inst. Hautes Études Sci. 128 (2018), 219397.CrossRefGoogle Scholar
Bloch, S. and Kato, K., ‘p-adic étale cohomology’, Publ. Math. Inst. Hautes Études Sci. 63 (1986), 107152.CrossRefGoogle Scholar
Fontaine, J.-M., ‘Représentations p-adiques des corps locaux (1ère partie)’, inThe Grothendieck Festschrift, Modern Birkhäuser Classics (Birkhäuser, Boston, 1990), 249309.Google Scholar
Ito, K., Ito, T. and Koshikawa, T., ‘CM liftings of $K3$ surfaces over finite fields and their applications to the Tate conjecture’. Preprint, 2018, arXiv:1809.09604 [math.AG].Google Scholar
Kim, W. and Madapusi Pera, K., ‘2-adic integral canonical models’, Forum Math. Sigma 4 (2016), e28, doi:10.1017/fms.2016.23.CrossRefGoogle Scholar
Kisin, M., ‘Crystalline representations and F-crystals’, inAlgebraic Geometry and Number Theory, Progress in Mathematics, 253 (Birkhäuser, Boston, 2006), 459496.CrossRefGoogle Scholar
Kisin, M., ‘Integral models for Shimura varieties of abelian type’, J. Amer. Math. Soc. 23(4) (2010), 9671012.CrossRefGoogle Scholar
Madapusi Pera, K., ‘The Tate conjecture for K3 surfaces in odd characteristic’, Invent. Math. 201(2) (2015), 625668.CrossRefGoogle Scholar
Madapusi Pera, K., ‘Integral canonical models for Spin Shimura varieties’, Compos. Math. 152(4) (2016), 769824.CrossRefGoogle Scholar