Article contents
Continuous Maps from Spheres Converging to Boundaries of Convex Hulls
Published online by Cambridge University Press: 18 February 2021
Abstract
Given n distinct points
$\mathbf {x}_1, \ldots , \mathbf {x}_n$
in
$\mathbb {R}^d$
, let K denote their convex hull, which we assume to be d-dimensional, and
$B = \partial K $
its
$(d-1)$
-dimensional boundary. We construct an explicit, easily computable one-parameter family of continuous maps
$\mathbf {f}_{\varepsilon } \colon \mathbb {S}^{d-1} \to K$
which, for
$\varepsilon> 0$
, are defined on the
$(d-1)$
-dimensional sphere, and whose images
$\mathbf {f}_{\varepsilon }({\mathbb {S}^{d-1}})$
are codimension
$1$
submanifolds contained in the interior of K. Moreover, as the parameter
$\varepsilon $
goes to
$0^+$
, the images
$\mathbf {f}_{\varepsilon } ({\mathbb {S}^{d-1}})$
converge, as sets, to the boundary B of the convex hull. We prove this theorem using techniques from convex geometry of (spherical) polytopes and set-valued homology. We further establish an interesting relationship with the Gauss map of the polytope B, appropriately defined. Several computer plots illustrating these results are included.
MSC classification
- Type
- Discrete Mathematics
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
References
- 1
- Cited by