Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T07:25:41.326Z Has data issue: false hasContentIssue false

Annihilator varieties of distinguished modules of reductive Lie algebras

Published online by Cambridge University Press:  26 July 2021

Dmitry Gourevitch
Affiliation:
Faculty of Mathematics and Computer Science, Weizmann Institute of Science, POB 26, Rehovot 76100, Israel E-mail: [email protected]
Eitan Sayag
Affiliation:
Department of Mathematics, Ben Gurion University of the Negev, POB 653, Be’er Sheva84105, Israel E-mail: [email protected]
Ido Karshon
Affiliation:
Faculty of Mathematics and Computer Science, Weizmann Institute of Science, POB 26, Rehovot 76100, Israel E-mail: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We provide a microlocal necessary condition for distinction of admissible representations of real reductive groups in the context of spherical pairs.

Let ${\mathbf {G}}$ be a complex algebraic reductive group and ${\mathbf {H}}\subset {\mathbf {G}}$ be a spherical algebraic subgroup. Let ${\mathfrak {g}},{\mathfrak {h}}$ denote the Lie algebras of ${\mathbf {G}}$ and ${\mathbf {H}}$ , and let ${\mathfrak {h}}^{\bot }$ denote the orthogonal complement to ${\mathfrak {h}}$ in ${\mathfrak {g}}^*$ . A ${\mathfrak {g}}$ -module is called ${\mathfrak {h}}$ -distinguished if it admits a nonzero ${\mathfrak {h}}$ -invariant functional. We show that the maximal ${\mathbf {G}}$ -orbit in the annihilator variety of any irreducible ${\mathfrak {h}}$ -distinguished ${\mathfrak {g}}$ -module intersects ${\mathfrak {h}}^{\bot }$ . This generalises a result of Vogan [Vog91].

We apply this to Casselman–Wallach representations of real reductive groups to obtain information on branching problems, translation functors and Jacquet modules. Further, we prove in many cases that – as suggested by [Pra19, Question 1] – when H is a symmetric subgroup of a real reductive group G, the existence of a tempered H-distinguished representation of G implies the existence of a generic H-distinguished representation of G.

Many of the models studied in the theory of automorphic forms involve an additive character on the unipotent radical of the subgroup $\bf H$ , and we have devised a twisted version of our theorem that yields necessary conditions for the existence of those mixed models. Our method of proof here is inspired by the theory of modules over W-algebras. As an application of our theorem we derive necessary conditions for the existence of Rankin–Selberg, Bessel, Klyachko and Shalika models. Our results are compatible with the recent Gan–Gross–Prasad conjectures for nongeneric representations [GGP20].

Finally, we provide more general results that ease the sphericity assumption on the subgroups, and apply them to local theta correspondence in type II and to degenerate Whittaker models.

Type
Algebra
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2021. Published by Cambridge University Press

References

Adams, J. and du Cloux, F., ‘Algorithms for representation theory of real reductive groups’, J. Inst. Math. Jussieu 8(2) (2009), 209259.CrossRefGoogle Scholar
Aizenbud, A. and Gourevitch, D., ‘Schwartz functions on Nash manifolds’, Int. Math. Res. Not. (IMRN) 2008 (2008), rnm155–37. Google Scholar
Aizenbud, A. and Gourevitch, D., ‘De-Rham theorem and Shapiro lemma for Schwartz functions on Nash manifolds’, Israel J. Math. 171 (2010), pp 155188.CrossRefGoogle Scholar
Aizenbud, A., Gourevitch, D., Kroetz, B. and Liu, G., ‘Erratum to: Hausdorffness for Lie algebra homology of Schwartz spaces and applications to the comparison conjecture’, Math. Z. 283(3-4) (2016), 993994.CrossRefGoogle Scholar
Aizenbud, A., Gourevitch, D. and Sahi, S., ‘Derivatives for representations of GL(n,R) and GL(n,C)’, Israel J. Math. 206 (2015), 138.CrossRefGoogle Scholar
Aizenbud, A., Offen, O. and Sayag, Eitan, ‘Disjoint pairs for $\mathrm{GL}\left(n,\mathbb{R}\right)$ and $\mathrm{GL}\left(n,\mathbb{C}\right)$ ’, C. R. Math. Acad. Sci. Paris 350 (2012), 911.CrossRefGoogle Scholar
Bernstein, I. N. and Zelevinsky, A. V., ‘Induced representations of reductive p-adic groups. I’, Ann. Sci. Éc. Norm. Supér. (4) 10 (1977), 441472.CrossRefGoogle Scholar
Borho, W. and Brylinski, J.-L., ‘Differential operators on homogeneous spaces III’, Invent. Math. 80 (1985), 168.CrossRefGoogle Scholar
Casselman, W., ‘Canonical extensions of Harish-Chandra modules to representations of G’, Canad. J. Math. XLI(3) (1989), 385438.CrossRefGoogle Scholar
Casselman, W., Hecht, H. and Miličić, D., ‘Bruhat filtrations and Whittaker vectors for real groups ’, in The Mathematical Legacy of Harish-Chandra (Baltimore, MD, 1998), Proceedings of Symposia in Pure Mathematics vol. 68 (American Mathematical Society, Providence, RI, 2000), 151190.CrossRefGoogle Scholar
Casselman, W. and Miličić, D., ‘Asymptotic behavior of matrix coefficients of admissible representations’, Duke Math. J. 49(4) (1982), 869930.CrossRefGoogle Scholar
Chan, K. Y., ‘Restriction for general linear groups: the local non-tempered Gan-Gross-Prasad conjecture (non-Archimedean case)’, Preprint, 2021, arXiv:2006.02623.Google Scholar
Chen, F. and Sun, B., ‘Uniqueness of Rankin-Selberg periods’, Int. Math. Res. Not. (IMRN) 2015(14) (2015), 58495873.CrossRefGoogle Scholar
Chriss, N. and Ginzburg, V., Representation Theory and Complex Geometry, Modern Birkhäuser Classics (Birkhäuser Boston Inc., Boston, MA, 2010). Reprint of the 1997 edition.CrossRefGoogle Scholar
Cluckers, R., Halupczok, I., Loeser, F. and Raibaut, M., ‘Distributions and wave front sets in the uniform non-archimedean setting’, Trans. London Math. Soc. 5(1) (2018), 97131.CrossRefGoogle Scholar
Collingwood, D. H. and McGovern, W. M., Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold Mathematics Series (Van Norstrand Reinhold, New York, 1992).Google Scholar
Corwin, L. and Greenleaf, F., ‘Spectrum and multiplicities for restrictions of unitary representations in nilpotent Lie groups’, Pacific J. Math. 135 (1988), 233267.CrossRefGoogle Scholar
Djoković, D., ‘Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers’, J. Algebra 112 (1988), 503524.CrossRefGoogle Scholar
Djoković, D., ‘Classification of nilpotent elements in simple real Lie algebras E6(6) and E6(-26) and description of their centralizers’, J. Algebra 116 (1988), 196207.CrossRefGoogle Scholar
Gabber, O., ‘The integrability of the characteristic variety’, Amer. J. Math. 103(3) (1981), 445468.CrossRefGoogle Scholar
Gan, W. L. and Ginzburg, V., ‘Quantization of Slodowy slices’, Int. Math. Res. Not. (IRMN) 2002(5) (2002), 243255.CrossRefGoogle Scholar
Gan, W. T., Gross, B. H. and Prasad, D., ‘Branching laws for classical groups: The non-tempered case’, Compos. Math. 156(11) (2020), 22982367.CrossRefGoogle Scholar
Gan, W. T., Gross, B. H. and Waldspurger, J.-L., Sur les conjectures de Gross et Prasad. I, Astérisque 346 (2012).Google Scholar
Ginsburg, V., ‘Admissible modules on a symmetric space’, Orbites unipotentes et representations, III, Astérisque 173-174(9-10) (1989), 199255.Google Scholar
Ginzburg, D., ‘Certain conjectures relating unipotent orbits to automorphic representations’, Israel J. Math. 151 (2006), 323355.CrossRefGoogle Scholar
Gomez, R., Gourevitch, D. and Sahi, S., ‘Whittaker supports for representations of reductive groups ’, Ann. Inst. Fourier (Grenoble) 71(1) (2021).CrossRefGoogle Scholar
Gomez, R. and Zhu, C. B., ‘Local theta lifting of generalized Whittaker models associated to nilpotent orbits’, Geom. Funct. Anal. 24(3) (2014), 796853.CrossRefGoogle Scholar
Gourevitch, D., Offen, O., Sahi, S. and Sayag, E., ‘Existence of Klyachko models for $\mathrm{GL}\left(n,\mathbb{R}\right)$ and $\mathrm{GL}\left(n,\mathbb{C}\right)$ ’, J. Funct. Anal. 262(8) (2012), 35853601.CrossRefGoogle Scholar
Gourevitch, D. and Sayag, E., ‘Generalized Whittaker quotients of Schwartz functions on $G$ -spaces’, Preprint, 2001, arXiv:2001. 11750.Google Scholar
Green, J. A., ‘The characters of the finite general linear groups’, Trans. Amer. Math. Soc. 80 (1955), 402447.CrossRefGoogle Scholar
Gurevich, M., ‘On restriction of unitarizable representations of general linear groups and the non-generic local Gan-Gross-Prasad conjecture’, Preprint, 2020, arXiv:1808.02640. To appear in J. Eur. Math. Soc. (JEMS).Google Scholar
Harish-Chandra, ‘The characters of reductive $p$ -adic groups’, in Contributions to Algebra (Collection of Papers Dedicated to Ellis Kolchin) (Academic Press, New York, 1977), 175182.Google Scholar
Harris, B., ‘Tempered representations and nilpotent orbits’, Represent. Theory 16 (2012), 610619.CrossRefGoogle Scholar
Hendrikson, A. E., The Burger-Sarnak Method and Operations on the Unitary Duals of Classical Groups, Ph.D. thesis, National University of Singapore, in preparation. arXiv:2002.11935 Google Scholar
Hörmander, L., The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, Grundlehren der Mathematischen Wissenschaften vol. 256 (Springer-Verlag, Berlin, 1990).Google Scholar
Howe, R., ‘The Fourier transform and germs of characters (case of $G{L}_n$ over a p-adic field)’, Math. Ann. 208 (1974), 305322.CrossRefGoogle Scholar
Jacquet, H., ‘A guide to the relative trace formula’, in Automorphic Representations, L-Functions and Applications: Progress and Prospects. Vol. 11, Ohio State University Mathematics Research Institute Publications (de Gruyter, Berlin, 2005), 257272.CrossRefGoogle Scholar
Jiang, D., Sun, B. and Zhu, C.-B., ‘Uniqueness of Bessel models: The Archimedean case’, Geom. Funct. Anal. 20(3) (2010), 690709.CrossRefGoogle Scholar
Joseph, A., ‘On the associated variety of a primitive ideal’, J. Algebra 93(2) (1985), 509523.CrossRefGoogle Scholar
Kobayashi, T. and Matsuki, T., ‘Classification of finite-multiplicity symmetric pairs’, Transform. Groups 19(2) (2014), 457493.CrossRefGoogle Scholar
Kostant, B., ‘The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group’, Amer. J. Math. 81(4) (1959), 9731032.CrossRefGoogle Scholar
Krause, G. R. and Lenagan, T. H., Growth of Algebras and Gelfand-Kirillov Dimension, revised edn, Graduate Studies in Mathematics vol. 22 (American Mathematical Society, Providence, RI, 2000).Google Scholar
Kroetz, B. and Schlichtkrull, H., ‘Multiplicity bounds and the subrepresentation theorem for real spherical spaces’, Trans. Amer. Math. Soc. 368(4) (2016), 27492762.CrossRefGoogle Scholar
Li, W.-W., ‘On the regularity of D-modules generated by relative characters’, Transform. Groups NNN (2020), PPP–PPP, DOI: https://doi.org/10.1007/s00031-020-09624-x CrossRefGoogle Scholar
Liu, D. and Wang, Z., ‘On the Gan-Gross-Prasad problem for finite unitary groups’, Preprint, 2020, arXiv:1908.11679.Google Scholar
Loke, H. and Ma, J., ‘Invariants and K-spectrums of local theta lifts’, Compos. Math. 151(1) (2015), 179206.CrossRefGoogle Scholar
Losev, I., ‘Quantized symplectic actions and W-algebras’, J. Amer. Math. Soc. 23(1) (2010), 3559.CrossRefGoogle Scholar
Lynch, T. E., Generalized Whittaker Vectors and Representation Theory, Ph.D. thesis, Massachusetts Institute of Technology (1979).Google Scholar
Matumoto, H., Whittaker vectors and associated varieties’, Invent. Math. 89 (1987), 219224.CrossRefGoogle Scholar
Moeglin, C. and Waldspurger, J. L., ‘Modeles de Whittaker degeneres pour des groupes p-adiques’, Math. Z. 196(3) (1987), 427452.CrossRefGoogle Scholar
Nelson, P. and Venkatesh, A., ‘The orbit method and analysis of automorphic forms’, Preprint, 2021, arXiv:1805.07750. To appear in Acta Math, 226 (1), 1209.Google Scholar
Offen, O. and Sayag, E., ‘The SL(2)-type and base change’, Represent. Theory 13 (2009), 228235.CrossRefGoogle Scholar
Offen, O. and Sayag, E., ‘Klyachko periods for Zelevinsky modules’, Ramanujan J. 49 (2019), 545553.CrossRefGoogle Scholar
Ohta, T., ‘Classification of admissible nilpotent orbits in the classical real Lie algebras’, J. Algebra 136(2) (1991), 290333.CrossRefGoogle Scholar
Paradan, P.-E., ‘Quantization commutes with reduction in the non-compact setting: The case of holomorphic discrete series’, J. Eur. Math. Soc. (JEMS) 17(4) (2015), 955990.CrossRefGoogle Scholar
Popov, V. L. and Tevelev, E. A., Self-Dual Projective Algebraic Varieties Associated With Symmetric Spaces, Algebraic Transformation Groups and Algebraic Varieties, Encyclopedia of Mathematical Sciences Vol. 132 (Springer-Verlag, Berlin, 2004).CrossRefGoogle Scholar
Prasad, D., ‘Generic representations for symmetric spaces’, Adv. Math. 348 (2019), 378411. With an appendix by Sakellaridis, Y..CrossRefGoogle Scholar
Przebinda, T.. ‘Characters, dual pairs, and unitary representations’, Duke Math. J. 69(3) (1993), 547592.Google Scholar
Przebinda, T., ‘The character and the wave front set correspondence in the stable range’, J. Funct. Anal. 274(5) (2018), 12841305.CrossRefGoogle Scholar
Rao, R. R., ‘Orbital integrals in reductive groups’, Ann. Math. 96(3) (1972), 505510.CrossRefGoogle Scholar
Rossmann, W., ‘Picard-Lefschetz theory and characters of a semisimple Lie group’, Invent. Math. 121 (1995), 579611.CrossRefGoogle Scholar
Sakellaridis, Y. and Venkatesh, A., Periods and Harmonic Analysis on Spherical Varieties, Astérisque 396 (2017).Google Scholar
Sekiguchi, J., ‘Remarks on real nilpotent orbits of a symmetric pair’, J. Math. Soc. Japan 39(1) (1987), 127138.CrossRefGoogle Scholar
Serre, J.-P., Galois Cohomology, Springer Monographs in Mathematics. (Springer-Verlag, Berlin, 2002). Translated from the French by Patrick Ion and revised by the author. Corrected reprint of the 1997 English edition.Google Scholar
Thoma, E., ‘Die Einschrinkung der Charaktere von $\mathrm{GL}\left(n,q\right)$ auf $\mathrm{GL}\left(n-1,q\right)$ ’, Math. Z. 119 (1971), 321338.CrossRefGoogle Scholar
Timashev, D. A., Homogeneous spaces and equivariant embeddings. Encyclopaedia of Mathematical Sciences, 138. Invariant Theory and Algebraic Transformation Groups, 8. Springer, Heidelberg, (2011). xxii+253 pp. ISBN: 978-3-642-18398-0.CrossRefGoogle Scholar
Treves, F., Topological Vector Spaces, Distributions and Kernels (Academic Press, New York, 1967).Google Scholar
Venkatesh, A., ‘The Burger-Sarnak method and operations on the unitary dual of GL(n)’, Represent. Theory 9 (2005), 268286.CrossRefGoogle Scholar
Vogan, D. A., Representations of Real Reductive Lie Groups, Progress in Mathematics vol. 15 (Birkhäuser, Boston, MA, 1981).Google Scholar
Vogan, D. A., ‘Associated varieties and unipotent representations ’, in Harmonic Analysis on Reductive Groups (Brunswick, ME, 1989), Progress in Mathematics vol. 101 (Birkhäuser, Boston, MA, 1991), 315388 CrossRefGoogle Scholar
Wallach, N., Real Reductive Groups I, II, Pure and Applied Mathematics vol. 132 (Academic Press, Boston, MA 1992).Google Scholar
Wan, C., ‘On multiplicity formula for spherical varieties’, Preprint, 2019, arXiv:1905.07066v3.Google Scholar
Zelevinsky, A. V., ‘Induced representations of reductive $p$ -adic groups. II. On irreducible representations of $\mathrm{GL}(n)$ ’, Ann. Sci. Éc. Norm. Supér. (4) 13(2) (1980), 165210.CrossRefGoogle Scholar
Zhang, Z., ‘Hall-Littlewood polynomials, Springer fibers and the annihilator varieties of induced representations, Preprint, 2020, arXiv:2011.02270.Google Scholar