Article contents
Holomorphic anomaly equation for
$({\mathbb P}^2,E)$ and the Nekrasov-Shatashvili limit of local
${\mathbb P}^2$
Published online by Cambridge University Press: 03 May 2021
Abstract
We prove a higher genus version of the genus $0$ local-relative correspondence of van Garrel-Graber-Ruddat: for
$(X,D)$ a pair with X a smooth projective variety and D a nef smooth divisor, maximal contact Gromov-Witten theory of
$(X,D)$ with
$\lambda _g$-insertion is related to Gromov-Witten theory of the total space of
${\mathcal O}_X(-D)$ and local Gromov-Witten theory of D.
Specializing to
$(X,D)=(S,E)$ for S a del Pezzo surface or a rational elliptic surface and E a smooth anticanonical divisor, we show that maximal contact Gromov-Witten theory of
$(S,E)$ is determined by the Gromov-Witten theory of the Calabi-Yau 3-fold
${\mathcal O}_S(-E)$ and the stationary Gromov-Witten theory of the elliptic curve E.
Specializing further to $S={\mathbb P}^2$, we prove that higher genus generating series of maximal contact Gromov-Witten invariants of
$({\mathbb P}^2,E)$ are quasimodular and satisfy a holomorphic anomaly equation. The proof combines the quasimodularity results and the holomorphic anomaly equations previously known for local
${\mathbb P}^2$ and the elliptic curve.
Furthermore, using the connection between maximal contact Gromov-Witten invariants of $({\mathbb P}^2,E)$ and Betti numbers of moduli spaces of semistable one-dimensional sheaves on
${\mathbb P}^2$, we obtain a proof of the quasimodularity and holomorphic anomaly equation predicted in the physics literature for the refined topological string free energy of local
${\mathbb P}^2$ in the Nekrasov-Shatashvili limit.
MSC classification
- Type
- Mathematical Physics
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210501060435471-0757:S2050508621000032:S2050508621000032_inline17.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210501060435471-0757:S2050508621000032:S2050508621000032_inline18.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210501060435471-0757:S2050508621000032:S2050508621000032_inline19.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210501060435471-0757:S2050508621000032:S2050508621000032_inline20.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210501060435471-0757:S2050508621000032:S2050508621000032_inline21.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210501060435471-0757:S2050508621000032:S2050508621000032_inline22.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210501060435471-0757:S2050508621000032:S2050508621000032_inline23.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210501060435471-0757:S2050508621000032:S2050508621000032_inline24.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210501060435471-0757:S2050508621000032:S2050508621000032_inline25.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210501060435471-0757:S2050508621000032:S2050508621000032_inline26.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210501060435471-0757:S2050508621000032:S2050508621000032_inline27.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210501060435471-0757:S2050508621000032:S2050508621000032_inline28.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210501060435471-0757:S2050508621000032:S2050508621000032_inline29.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210501060435471-0757:S2050508621000032:S2050508621000032_inline30.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210501060435471-0757:S2050508621000032:S2050508621000032_inline31.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210501060435471-0757:S2050508621000032:S2050508621000032_inline32.png?pub-status=live)
- 12
- Cited by