Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T07:13:37.924Z Has data issue: false hasContentIssue false

Targeting of the immune system in systemic lupus erythematosus

Published online by Cambridge University Press:  21 January 2008

Meera Ramanujam
Affiliation:
Feinstein Institute for Medical Research, NS-LIJHS, Manhasset, NY 11030, USA.
Anne Davidson*
Affiliation:
Feinstein Institute for Medical Research, NS-LIJHS, Manhasset, NY 11030, USA.
*
*Corresponding author: Anne Davidson, Feinstein Institute for Medical Research, NS-LIJHS, Autoimmune Laboratory, 350 Community Drive, Manhasset, NY 11030, USA. Tel: +1 516 562 3840; Fax: +1 516 562 2953; E-mail: [email protected]

Abstract

Systemic lupus erythematosus (SLE) is a complex immune disorder in which loss of tolerance to nucleic acid antigens and other crossreactive antigens is associated with the development of pathogenic autoantibodies that damage target organs, including the skin, joints, brain and kidney. New drugs based on modulation of the immune system are currently being developed for the treatment of SLE. Many of these new therapies do not globally suppress the immune system but target specific activation pathways relevant to SLE pathogenesis. Immune modulation in SLE is complicated by differences in the immune defects between patients and at different disease stages. Since both deficiency and hyperactivity of the immune system can give rise to SLE, the ultimate goal for SLE therapy is to restore homeostasis without affecting protective immune responses to pathogens. Here we review recent immunological advances that have enhanced our understanding of SLE pathogenesis and discuss how they may lead to the development of new treatment regimens.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Wardemann, H. et al. (2003) Predominant autoantibody production by early human B cell precursors. Science 301, 1374-1377CrossRefGoogle ScholarPubMed
2Arbuckle, M.R. et al. (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349, 1526-1533CrossRefGoogle ScholarPubMed
3Fairhurst, A.M., Wandstrat, A.E. and Wakeland, E.K. (2006) Systemic lupus erythematosus: multiple immunological phenotypes in a complex genetic disease. Adv Immunol 92, 1-69CrossRefGoogle Scholar
4Theofilopoulos, A.N. and Kono, D.H. (1999) The genes of systemic autoimmunity. Proc Assoc Am Physicians 111, 228-240CrossRefGoogle ScholarPubMed
5Lauwerys, B.R. and Wakeland, E.K. (2005) Genetics of lupus nephritis. Lupus 14, 2-12CrossRefGoogle ScholarPubMed
6Grimaldi, C.M. et al. (2002) Estrogen alters thresholds for B cell apoptosis and activation. J Clin Invest 109, 1625-1633CrossRefGoogle ScholarPubMed
7Cornall, R.J. and Goodnow, C.C. (1998) B cell antigen receptor signalling in the balance of tolerance and immunity. Novartis Found Symp 215, 21-40Google ScholarPubMed
8Mahoney, J.A. and Rosen, A. (2005) Apoptosis and autoimmunity. Curr Opin Immunol 17, 583-588CrossRefGoogle ScholarPubMed
9Navratil, J.S., Liu, C.C. and Ahearn, J.M. (2006) Apoptosis and autoimmunity. Immunol Res 36, 3-12CrossRefGoogle ScholarPubMed
10Bickerstaff, M.C. et al. (1999) Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat Med 5, 694-697CrossRefGoogle ScholarPubMed
11Manson, J.J., Mauri, C. and Ehrenstein, M.R. (2005) Natural serum IgM maintains immunological homeostasis and prevents autoimmunity. Springer Semin Immunopathol 26, 425-432CrossRefGoogle ScholarPubMed
12Manderson, A.P., Botto, M. and Walport, M.J. (2004) The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol 22, 431-456CrossRefGoogle ScholarPubMed
13Lee-Kirsch, M.A. et al. (2007) Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet 39, 1065-1067CrossRefGoogle Scholar
14Christensen, S.R. and Shlomchik, M.J. (2007) Regulation of lupus-related autoantibody production and clinical disease by Toll-like receptors. Semin Immunol 19, 11-23CrossRefGoogle ScholarPubMed
15Lenert, P.S. (2006) Targeting Toll-like receptor signaling in plasmacytoid dendritic cells and autoreactive B cells as a therapy for lupus. Arthritis Res Ther 8, 203CrossRefGoogle ScholarPubMed
16Wagner, H. and Bauer, S. (2006) All is not Toll: new pathways in DNA recognition. J Exp Med 203, 265-268CrossRefGoogle ScholarPubMed
17Lau, C.M. et al. (2005) RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med 202, 1171-1177CrossRefGoogle ScholarPubMed
18Wagner, H. (2006) Endogenous TLR ligands and autoimmunity. Adv Immunol 91, 159-173CrossRefGoogle ScholarPubMed
19Rutz, M. et al. (2004) Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol 34, 2541-2550CrossRefGoogle Scholar
20Akira, S., Uematsu, S. and Takeuchi, O. (2006) Pathogen recognition and innate immunity. Cell 124, 783-801CrossRefGoogle ScholarPubMed
21Honda, K., Takaoka, A. and Taniguchi, T. (2006) Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25, 349-360CrossRefGoogle ScholarPubMed
22Pandey, S. and Agrawal, D.K. (2006) Immunobiology of Toll-like receptors: emerging trends. Immunol Cell Biol 84, 333-341CrossRefGoogle ScholarPubMed
23Sigurdsson, S. et al. (2005) Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 76, 528-537CrossRefGoogle ScholarPubMed
24Ronnblom, L. and Alm, G.V. (2003) Systemic lupus erythematosus and the type I interferon system. Arthritis Res Ther 5, 68-75CrossRefGoogle ScholarPubMed
25Mathian, A. et al. (2005) IFN-alpha induces early lethal lupus in preautoimmune (New Zealand Black x New Zealand White) F1 but not in BALB/c mice. J Immunol 174, 2499-2506CrossRefGoogle Scholar
26Pasare, C. and Medzhitov, R. (2003) Toll pathway-dependent blockade of CD4+ CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033-1036CrossRefGoogle ScholarPubMed
27Krutzik, S.R. et al. (2005) TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nat Med 11, 653-660CrossRefGoogle ScholarPubMed
28Logue, E.C. et al. (2006) ICOS-induced B7 h shedding on B cells is inhibited by TLR7/8 and TLR9. J Immunol 177, 2356-2364CrossRefGoogle Scholar
29Ehlers, M. and Ravetch, J.V. (2007) Opposing effects of Toll-like receptor stimulation induce autoimmunity or tolerance. Trends Immunol 28, 74-79CrossRefGoogle ScholarPubMed
30Tian, J. et al. (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8, 487-496CrossRefGoogle ScholarPubMed
31Christensen, S.R. et al. (2006) Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417-428CrossRefGoogle Scholar
32Ehlers, M. et al. (2006) TLR9/MyD88 signaling is required for class switching to pathogenic IgG2a and 2b autoantibodies in SLE. J Exp Med 203, 553-561CrossRefGoogle ScholarPubMed
33Wu, X. and Peng, S.L. (2006) Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum 54, 336-342CrossRefGoogle ScholarPubMed
34Berland, R. et al. (2006) Toll-like receptor 7-dependent loss of B cell tolerance in pathogenic autoantibody knockin mice. Immunity 25, 429-440CrossRefGoogle ScholarPubMed
35Pisitkun, P. et al. (2006) Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312, 1669-1672CrossRefGoogle ScholarPubMed
36Akkerman, A. et al. (2004) CTLA4Ig prevents initiation but not evolution of anti-phospholipid syndrome in NZW/BXSB mice. Autoimmunity 37, 445-451CrossRefGoogle Scholar
37Kanzler, H. et al. (2007) Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 13, 552-559CrossRefGoogle ScholarPubMed
38Dong, L. et al. (2005) Suppressive oligodeoxynucleotides delay the onset of glomerulonephritis and prolong survival in lupus-prone NZB x NZW mice. Arthritis Rheum 52, 651-658CrossRefGoogle ScholarPubMed
39Anders, H.J. and Schlondorff, D. (2007) Toll-like receptors: emerging concepts in kidney disease. Curr Opin Nephrol Hypertens 16, 177-183CrossRefGoogle ScholarPubMed
40Nimmerjahn, F. and Ravetch, J.V. (2006) Fcgamma receptors: old friends and new family members. Immunity 24, 19-28CrossRefGoogle ScholarPubMed
41McGaha, T.L., Sorrentino, B. and Ravetch, J.V. (2005) Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science 307, 590-593CrossRefGoogle ScholarPubMed
42Clatworthy, M.R. et al. (2007) Systemic lupus erythematosus-associated defects in the inhibitory receptor FcgammaRIIb reduce susceptibility to malaria. Proc Natl Acad Sci U S A 104, 7169-7174CrossRefGoogle ScholarPubMed
43Mackay, M. et al. (2006) Selective dysregulation of the FcgammaIIB receptor on memory B cells in SLE. J Exp Med 203, 2157-2164CrossRefGoogle ScholarPubMed
44Su, K. et al. (2007) Expression profile of FcgammaRIIb on leukocytes and its dysregulation in systemic lupus erythematosus. J Immunol 178, 3272-3280CrossRefGoogle ScholarPubMed
45Bolland, S. and Ravetch, J.V. (2000) Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity 13, 277-285CrossRefGoogle ScholarPubMed
46Fukuyama, H., Nimmerjahn, F. and Ravetch, J.V. (2005) The inhibitory Fcgamma receptor modulates autoimmunity by limiting the accumulation of immunoglobulin G+ anti-DNA plasma cells. Nat Immunol 6, 99-106CrossRefGoogle ScholarPubMed
47Harley, J.B., Kelly, J.A. and Kaufman, K.M. (2006) Unraveling the genetics of systemic lupus erythematosus. Springer Semin Immunopathol 28, 119-130CrossRefGoogle ScholarPubMed
48Karassa, F.B., Trikalinos, T.A. and Ioannidis, J.P. (2004) The role of FcgammaRIIA and IIIA polymorphisms in autoimmune diseases. Biomed Pharmacother 58, 286-291CrossRefGoogle ScholarPubMed
49Nimmerjahn, F. and Ravetch, J.V. (2007) The antiinflammatory activity of IgG: the intravenous IgG paradox. J Exp Med 204, 11-15CrossRefGoogle ScholarPubMed
50Diamond, B. et al. (1992) The role of somatic mutation in the pathogenic anti-DNA response. Annu Rev Immunol 10, 731-757CrossRefGoogle ScholarPubMed
51Abbas, A.K. et al. (2004) T cell tolerance and autoimmunity. Autoimmun Rev 3, 471-475CrossRefGoogle ScholarPubMed
52Miyara, M. and Sakaguchi, S. (2007) Natural regulatory T cells: mechanisms of suppression. Trends Mol Med 13, 108-116CrossRefGoogle ScholarPubMed
53Mondino, A. and Mueller, D.L. (2007) mTOR at the crossroads of T cell proliferation and tolerance. Semin Immunol 19, 162-172CrossRefGoogle ScholarPubMed
54Vincenti, F. and Luggen, M. (2007) T cell costimulation: a rational target in the therapeutic armamentarium for autoimmune diseases and transplantation. Annu Rev Med 58, 347-358CrossRefGoogle ScholarPubMed
55Lohr, J. et al. (2003) The inhibitory function of B7 costimulators in T cell responses to foreign and self-antigens. Nat Immunol 4, 664-669CrossRefGoogle Scholar
56Mellor, A.L. et al. (2003) Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J Immunol 171, 1652-1655CrossRefGoogle ScholarPubMed
57Mellor, A. (2005) Indoleamine 2,3 dioxygenase and regulation of T cell immunity. Biochem Biophys Res Commun 338, 20-24CrossRefGoogle ScholarPubMed
58Ueda, H. et al. (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506-511CrossRefGoogle ScholarPubMed
59Mirenda, V. et al. (2007) Physiologic and aberrant regulation of memory T-cell trafficking by the costimulatory molecule CD28. Blood 109, 2968-2977CrossRefGoogle ScholarPubMed
60Davidson, A. et al. (2005) Block and tackle: CTLA4Ig takes on lupus. Lupus 14, 197-203CrossRefGoogle ScholarPubMed
61Moreland, L.W. et al. (2002) Costimulatory blockade in patients with rheumatoid arthritis: a pilot, dose-finding, double-blind, placebo-controlled clinical trial evaluating CTLA-4Ig and LEA29Y eighty-five days after the first infusion. Arthritis Rheum 46, 1470-1479CrossRefGoogle ScholarPubMed
62Finck, B.K., Linsley, P.S. and Wofsy, D. (1994) Treatment of murine lupus with CTLA4Ig. Science 265, 1225-1227CrossRefGoogle ScholarPubMed
63Daikh, D.I. et al. (1997) Long-term inhibition of murine lupus by brief simultaneous blockade of the B7/CD28 and CD40/gp39 costimulation pathways. J Immunol 159, 3104-3108CrossRefGoogle ScholarPubMed
64Wang, X. et al. (2002) Mechanism of action of combined short-term CTLA4Ig and anti-CD40 ligand in murine systemic lupus erythematosus. J Immunol 168, 2046-2053CrossRefGoogle ScholarPubMed
65Schiffer, L. et al. (2003) Short term administration of costimulatory blockade and cyclophosphamide induces remission of systemic lupus erythematosus nephritis in NZB/W F1 mice by a mechanism downstream of renal immune complex deposition. J Immunol 171, 489-497CrossRefGoogle ScholarPubMed
66Greenwald, R.J., Latchman, Y.E. and Sharpe, A.H. (2002) Negative co-receptors on lymphocytes. Curr Opin Immunol 14, 391-396CrossRefGoogle ScholarPubMed
67Hutloff, A. et al. (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263-266CrossRefGoogle ScholarPubMed
68Lohning, M. et al. (2003) Expression of ICOS in vivo defines CD4+ effector T cells with high inflammatory potential and a strong bias for secretion of interleukin 10. J Exp Med 197, 181-193CrossRefGoogle Scholar
69Rasheed, A.U. et al. (2006) Follicular B helper T cell activity is confined to CXCR5(hi)ICOS(hi) CD4 T cells and is independent of CD57 expression. Eur J Immunol 36, 1892-1903CrossRefGoogle ScholarPubMed
70McAdam, A.J. et al. (2001) ICOS is critical for CD40-mediated antibody class switching. Nature 409, 102-105CrossRefGoogle ScholarPubMed
71Dong, C. et al. (2001) ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97-101CrossRefGoogle ScholarPubMed
72Shilling, R.A., Bandukwala, H.S. and Sperling, A.I. (2006) Regulation of T:B cell interactions by the inducible costimulator molecule: does ICOS “induce” disease? Clin Immunol 121, 13-18CrossRefGoogle ScholarPubMed
73Hutloff, A. et al. (2004) Involvement of inducible costimulator in the exaggerated memory B cell and plasma cell generation in systemic lupus erythematosus. Arthritis Rheum 50, 3211-3220CrossRefGoogle ScholarPubMed
74Vinuesa, C.G. et al. (2005) A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452-458CrossRefGoogle ScholarPubMed
75Iwai, H. et al. (2003) Involvement of inducible costimulator-B7 homologous protein costimulatory pathway in murine lupus nephritis. J Immunol 171, 2848-2854CrossRefGoogle ScholarPubMed
76Sharpe, A.H. et al. (2007) The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 8, 239-245CrossRefGoogle ScholarPubMed
77Ansari, M.J. et al. (2003) The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 198, 63-69CrossRefGoogle ScholarPubMed
78Fife, B.T. et al. (2006) Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway. J Exp Med 203, 2737-2747CrossRefGoogle ScholarPubMed
79Okazaki, T., Iwai, Y. and Honjo, T. (2002) New regulatory co-receptors: inducible co-stimulator and PD-1. Curr Opin Immunol 14, 779-782CrossRefGoogle ScholarPubMed
80Prokunina, L. et al. (2002) A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32, 666-669CrossRefGoogle ScholarPubMed
81Watanabe, N. et al. (2003) BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 4, 670-679CrossRefGoogle ScholarPubMed
82Sedy, J.R. et al. (2005) B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol 6, 90-98CrossRefGoogle Scholar
83Greenwald, R.J., Freeman, G.J. and Sharpe, A.H. (2005) The B7 family revisited. Annu Rev Immunol 23, 515-548CrossRefGoogle ScholarPubMed
84Foell, J. et al. (2003) CD137 costimulatory T cell receptor engagement reverses acute disease in lupus-prone NZB x NZW F1 mice. J Clin Invest 111, 1505-1518CrossRefGoogle ScholarPubMed
85Kim, J. et al. (2005) Stimulation with 4-1BB (CD137) inhibits chronic graft-versus-host disease by inducing activation-induced cell death of donor CD4+ T cells. Blood 105, 2206-2213CrossRefGoogle ScholarPubMed
86Choi, B.K. et al. (2004) 4-1BB-dependent inhibition of immunosuppression by activated CD4+ CD25+ T cells. J Leukoc Biol 75, 785-791CrossRefGoogle ScholarPubMed
87Sun, Y. et al. (2002) Costimulatory molecule-targeted antibody therapy of a spontaneous autoimmune disease. Nat Med 8, 1405-1413CrossRefGoogle ScholarPubMed
88Salomon, B. and Bluestone, J.A. (2001) Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 19, 225-252CrossRefGoogle ScholarPubMed
89Castigli, E. et al. (1994) CD40-deficient mice generated by recombination-activating gene-2-deficient blastocyst complementation. Proc Natl Acad Sci U S A 91, 12135-12139CrossRefGoogle ScholarPubMed
90Grewal, I.S. and Flavell, R.A. (1998) CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 16, 111-135CrossRefGoogle ScholarPubMed
91Vogel, L.A. and Noelle, R.J. (1998) CD40 and its crucial role as a member of the TNFR family. Semin Immunol 10, 435-442CrossRefGoogle ScholarPubMed
92Wang, X. et al. (2003) Effects of anti-CD154 treatment on B cells in murine systemic lupus erythematosus. Arthritis Rheum 48, 495-506CrossRefGoogle Scholar
93Sidiropoulos, P.I. and Boumpas, D.T. (2004) Lessons learned from anti-CD40L treatment in systemic lupus erythematosus patients. Lupus 13, 391-397CrossRefGoogle ScholarPubMed
94Kalunian, K.C. et al. (2002) Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 46, 3251-3258CrossRefGoogle ScholarPubMed
95Boumpas, D.T. et al. (2003) A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum 48, 719-727CrossRefGoogle Scholar
96Huang, W. et al. (2002) The effect of anti-CD40 ligand antibody on B cells in human SLE. Arthritis Rheum 46, 1554-1562CrossRefGoogle Scholar
97Grammer, A.C. et al. (2001) Normalization of peripheral B cells following treatment of active SLE patients with humanized anti-CD154 MAb (5c8, BG9588) (Abstract). Arthritis Rheum 44, S282Google Scholar
98Mohan, C. et al. (1995) Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J Immunol 154, 1470-1480CrossRefGoogle ScholarPubMed
99Drachman, J.G. et al. (2005) A humanized anti-CD40 monoclonal antibody (SGN-40) demonstrates antitumor activity in non-Hodgkin's lymphoma: initiation of a Phase I clinical trial. J Clin Oncol 23, 6572CrossRefGoogle Scholar
100Sutherland, A.P., Mackay, F. and Mackay, C.R. (2006) Targeting BAFF: immunomodulation for autoimmune diseases and lymphomas. Pharmacol Ther 112, 774-786CrossRefGoogle ScholarPubMed
101Ramanujam, M. and Davidson, A. (2004) The current status of targeting BAFF/BLyS for autoimmune diseases. Arthritis Res Ther 6, 197-202CrossRefGoogle ScholarPubMed
102Mackay, F. et al. (2003) BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol 21, 231-264CrossRefGoogle Scholar
103O'Connor, B.P. et al. (2004) BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med 199, 91-98CrossRefGoogle ScholarPubMed
104Ingold, K. et al. (2005) Identification of proteoglycans as the APRIL-specific binding partners. J Exp Med 201, 1375-1383CrossRefGoogle ScholarPubMed
105Schiemann, B. et al. (2001) An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293, 2111-2114CrossRefGoogle ScholarPubMed
106Ramanujam, M. et al. (2006) Similarities and differences between selective and nonselective BAFF blockade in murine SLE. J Clin Invest 116, 724-734CrossRefGoogle ScholarPubMed
107Vora, K.A. et al. (2003) Cutting edge: germinal centers formed in the absence of B cell-activating factor belonging to the TNF family exhibit impaired maturation and function. J Immunol 171, 547-551CrossRefGoogle Scholar
108Jacob, C.O. et al. (2006) Paucity of clinical disease despite serological autoimmunity and kidney pathology in lupus-prone New Zealand mixed 2328 mice deficient in BAFF. J Immunol 177, 2671-2680CrossRefGoogle ScholarPubMed
109Groom, J.R. et al. (2007) BAFF and MyD88 signals promote a lupuslike disease independent of T cells. J Exp Med 204, 1959-1971CrossRefGoogle ScholarPubMed
110Lesley, R. et al. (2004) Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity 20, 441-453CrossRefGoogle ScholarPubMed
111Thien, M. et al. (2004) Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20, 785-798CrossRefGoogle ScholarPubMed
112Martin, F. and Chan, A.C. (2006) B cell immunobiology in disease: evolving concepts from the clinic. Annu Rev Immunol 24, 467-496CrossRefGoogle ScholarPubMed
113Zhang, J. et al. (2001) Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol 166, 6-10CrossRefGoogle Scholar
114Cheema, G.S. et al. (2001) Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum 44, 1313-13193.0.CO;2-S>CrossRefGoogle ScholarPubMed
115Chang, S.K. et al. (2006) A role for BLyS in the activation of innate immune cells. Blood 108, 2687-2694CrossRefGoogle ScholarPubMed
116Ramanujam, M. et al. (2004) Mechanism of action of transmembrane activator and calcium modulator ligand interactor-Ig in murine systemic lupus erythematosus. J Immunol 173, 3524-3534CrossRefGoogle ScholarPubMed
117Ginzler, E. et al. (2007) Novel combined response endpoint shows that belimumab (fully human monoclonal antibody to B-lymphocyte stimulator [BLyS]) improves or stabilizes SLE disease activity in a phase 2 trial. Presented at EULAR 2007 Meeting (13–16 June 2007; Barcelona, Spain), Abstract OP0018, http://abstract.mci-group.com/cgi-bin/mc/printabs.pl?APP=EULAR2007SCIE-abstract&TEMPLATE=&keyf=0267&showHide=show&client=Google Scholar
118Grammer, A.C. and Lipsky, P.E. (2003) B cell abnormalities in systemic lupus erythematosus. Arthritis Res Ther 5, S22-S27CrossRefGoogle ScholarPubMed
119Riley, J.K. and Sliwkowski, M.X. (2000) CD20: a gene in search of a function. Semin Oncol 27, 17-24Google ScholarPubMed
120Uchida, J. et al. (2004) Mouse CD20 expression and function. Int Immunol 16, 119-129CrossRefGoogle ScholarPubMed
121Clynes, R.A. et al. (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6, 443-446CrossRefGoogle Scholar
122Uchida, J. et al. (2004) The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 199, 1659-1669CrossRefGoogle ScholarPubMed
123Gong, Q. et al. (2005) Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol 174, 817-826CrossRefGoogle ScholarPubMed
124Hamaguchi, Y. et al. (2005) The peritoneal cavity provides a protective niche for B1 and conventional B lymphocytes during anti-CD20 immunotherapy in mice. J Immunol 174, 4389-4399CrossRefGoogle ScholarPubMed
125Lin, W.Y. et al. (2007) Anti-BR3 antibodies - a new class of B cell immunotherapy combining cellular depletion and survival blockade. Blood 110, 3959-3967CrossRefGoogle ScholarPubMed
126Sfikakis, P.P., Boletis, J.N. and Tsokos, G.C. (2005) Rituximab anti-B-cell therapy in systemic lupus erythematosus: pointing to the future. Curr Opin Rheumatol 17, 550-557CrossRefGoogle ScholarPubMed
127Looney, R.J. et al. (2004) B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum 50, 2580-2589CrossRefGoogle ScholarPubMed
128Leandro, M.J. et al. (2002) An open study of B lymphocyte depletion in systemic lupus erythematosus. Arthritis Rheum 46, 2673-2677CrossRefGoogle ScholarPubMed
129van Vollenhoven, R.F. et al. (2004) Biopsy-verified response of severe lupus nephritis to treatment with rituximab (anti-CD20 monoclonal antibody) plus cyclophosphamide after biopsy-documented failure to respond to cyclophosphamide alone. Scand J Rheumatol 33, 423-427CrossRefGoogle ScholarPubMed
130Anolik, J.H. et al. (2003) The relationship of FcgammaRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum 48, 455-459CrossRefGoogle ScholarPubMed
131Anolik, J.H. et al. (2004) Rituximab improves peripheral B cell abnormalities in human systemic lupus erythematosus. Arthritis Rheum 50, 3580-3590CrossRefGoogle ScholarPubMed
132Leandro, M.J. et al. (2006) Reconstitution of peripheral blood B cells after depletion with rituximab in patients with rheumatoid arthritis. Arthritis Rheum 54, 613-620CrossRefGoogle Scholar
133Ng, K.P. et al. (2007) B cell depletion therapy in systemic lupus erythematosus: long-term follow-up and predictors of response. Ann Rheum Dis 66, 1259-1262CrossRefGoogle ScholarPubMed
134Tedder, T.F. et al. (1997) CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annu Rev Immunol 15, 481-504CrossRefGoogle Scholar
135Crocker, P.R., Paulson, J.C. and Varki, A. (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7, 255-266CrossRefGoogle ScholarPubMed
136Otipoby, K.L. et al. (1996) CD22 regulates thymus-independent responses and the lifespan of B cells. Nature 384, 634-637CrossRefGoogle ScholarPubMed
137O'Keefe, T.L. et al. (1999) Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J Exp Med 189, 1307-1313CrossRefGoogle Scholar
138Leonard, J.P. et al. (2004) Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin's lymphoma: phase I/II clinical trial results. Clin Cancer Res 10, 5327-5334CrossRefGoogle ScholarPubMed
139Dorner, T. et al. (2006) Initial clinical trial of epratuzumab (humanized anti-CD22 antibody) for immunotherapy of systemic lupus erythematosus. Arthritis Res Ther 8, R74CrossRefGoogle ScholarPubMed
140Jacobi, A.M. et al. (2007) Differential effects of epratuzumab on peripheral blood B cells of SLE patients versus normal controls. Ann Rheum Dis [doi:10.1136/ard.2007.075762]Google Scholar
141Carnahan, J. et al. (2007) Epratuzumab, a CD22-targeting recombinant humanized antibody with a different mode of action from rituximab. Mol Immunol 44, 1331-1341CrossRefGoogle ScholarPubMed
142Alarcon-Segovia, D. et al. (2003) LJP 394 for the prevention of renal flare in patients with systemic lupus erythematosus: results from a randomized, double-blind, placebo-controlled study. Arthritis Rheum 48, 442-454CrossRefGoogle ScholarPubMed
143Wiesendanger, M. et al. (2006) Novel therapeutics for systemic lupus erythematosus. Curr Opin Rheumatol 18, 227-235CrossRefGoogle ScholarPubMed
144Herrero, C. et al. (2003) Reprogramming of IL-10 activity and signaling by IFN-gamma. J Immunol 171, 5034-5041CrossRefGoogle ScholarPubMed
145Hu, X. et al. (2007) Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. J Leukoc Biol 82, 237-243CrossRefGoogle ScholarPubMed
146Liang, B. et al. (2006) Anti-interleukin-6 monoclonal antibody inhibits autoimmune responses in a murine model of systemic lupus erythematosus. Immunology 119, 296-305CrossRefGoogle Scholar
147Kishimoto, T. (2005) Interleukin-6: from basic science to medicine – 40 years in immunology. Annu Rev Immunol 23, 1-21CrossRefGoogle ScholarPubMed
148Mihara, M., Nishimoto, N. and Ohsugi, Y. (2005) The therapy of autoimmune diseases by anti-interleukin-6 receptor antibody. Expert Opin Biol Ther 5, 683-690CrossRefGoogle ScholarPubMed
149Linker-Israeli, M. et al. (1991) Elevated levels of endogenous IL-6 in systemic lupus erythematosus. A putative role in pathogenesis. J Immunol 147, 117-123CrossRefGoogle ScholarPubMed
150Tackey, E., Lipsky, P.E. and Illei, G.G. (2004) Rationale for interleukin-6 blockade in systemic lupus erythematosus. Lupus 13, 339-343CrossRefGoogle ScholarPubMed
151Mihara, M. et al. (1998) IL-6 receptor blockage inhibits the onset of autoimmune kidney disease in NZB/W F1 mice. Clin Exp Immunol 112, 397-402CrossRefGoogle ScholarPubMed
152Finck, B.K., Chan, B. and Wofsy, D. (1994) Interleukin 6 promotes murine lupus in NZB/NZW F1 mice. J Clin Invest 94, 585-591CrossRefGoogle ScholarPubMed
153Illei, G.G. et al. (2006) Tocilizumab (humanized anti IL-6 receptor monoclonal antibody) in patients with systemic lupus erythematosus (SLE): safety, tolerability and preliminary efficacy. Presented at American College of Rheumatology Meeting, (10–15 November 2006; Washington DC, USA). Abstract no. 500, http://www.abstractsonline.com/viewer/viewAbstractPrintFriendly.asp?CKey={6F07625D-EB8C-4B2A-9416-747B62375600}&SKey={9EABBCE4-6F21-4386-9659-6C0982180B4A}&MKey={C297FAF7-2B4C-45F5-A662-0972E559ED7D}&AKey={AA45DD66-F113-4CDD-8E62-01A05F613C0D}Google Scholar
154Hill, C.M. and Lunec, J. (1996) The TNF-ligand and receptor superfamilies: controllers of immunity and the Trojan horses of autoimmune disease? Mol Aspects Med. 17, 455-509CrossRefGoogle ScholarPubMed
155Jacob, C.O. and McDevitt, H.O. (1988) Tumour necrosis factor-alpha in murine autoimmune ‘lupus’ nephritis. Nature 331, 356-358CrossRefGoogle ScholarPubMed
156Kontoyiannis, D. and Kollias, G. (2000) Accelerated autoimmunity and lupus nephritis in NZB mice with an engineered heterozygous deficiency in tumor necrosis factor. Eur J Immunol 30, 2038-20473.0.CO;2-K>CrossRefGoogle ScholarPubMed
157Mountz, J.D. (2001) Re: collagen-induced arthritis in TNF receptor-1-deficient mice: TNF receptor-2 can modulate arthritis in the absence of TNF receptor 1. Clin Immunol 99, 305-307CrossRefGoogle ScholarPubMed
158Romas, E., Gillespie, M.T. and Martin, T.J. (2002) Involvement of receptor activator of NFkappaB ligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis. Bone 30, 340-346CrossRefGoogle ScholarPubMed
159Feldmann, M. and Maini, R.N. (2001) Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 19, 163-196CrossRefGoogle ScholarPubMed
160Sandborn, W.J. and Hanauer, S.B. (1999) Antitumor necrosis factor therapy for inflammatory bowel disease: a review of agents, pharmacology, clinical results, and safety. Inflamm Bowel Dis 5, 119-133CrossRefGoogle ScholarPubMed
161Feldmann, M. and Maini, R.N. (2003) Lasker Clinical Medical Research Award. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat Med 9, 1245-1250CrossRefGoogle ScholarPubMed
162Tobin, A.M. and Kirby, B. (2005) TNF alpha inhibitors in the treatment of psoriasis and psoriatic arthritis. BioDrugs 19, 47-57CrossRefGoogle ScholarPubMed
163Kollias, G. (2005) TNF pathophysiology in murine models of chronic inflammation and autoimmunity. Semin Arthritis Rheum 34, 3-6CrossRefGoogle Scholar
164Swale, V.J. et al. (2003) Etanercept-induced systemic lupus erythematosus. Clin Exp Dermatol 28, 604-607CrossRefGoogle ScholarPubMed
165Tipping, P.G. and Holdsworth, S.R. (2007) Cytokines in glomerulonephritis. Semin Nephrol 27, 275-285CrossRefGoogle ScholarPubMed
166Aringer, M. et al. (2004) Safety and efficacy of tumor necrosis factor alpha blockade in systemic lupus erythematosus: an open-label study. Arthritis Rheum 50, 3161-3169CrossRefGoogle ScholarPubMed
167Aringer, M. et al. (2007) Effects of short-term infliximab therapy on autoantibodies in systemic lupus erythematosus. Arthritis Rheum 56, 274-279CrossRefGoogle Scholar
168Valencia, X. et al. (2007) Deficient CD4+ CD25 high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol 178, 2579-2588CrossRefGoogle Scholar
169Chan, F.K. and Lenardo, M.J. (2002) Tumor Necrosis Factor Family Ligands and Receptors in the Immune System: Targets for Future Pharmaceuticals. Drug News Perspect 15, 483-490CrossRefGoogle ScholarPubMed
170Locksley, R.M., Killeen, N. and Lenardo, M.J. (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487-501CrossRefGoogle ScholarPubMed
171Fu, Y.X. and Chaplin, D.D. (1999) Development and maturation of secondary lymphoid tissues. Annu Rev Immunol 17, 399-433CrossRefGoogle ScholarPubMed
172Kassiotis, G. and Kollias, G. (2001) Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination. J Exp Med 193, 427-434CrossRefGoogle ScholarPubMed
173Pascual, V., Farkas, L. and Banchereau, J. (2006) Systemic lupus erythematosus: all roads lead to type I interferons. Curr Opin Immunol 18, 676-682CrossRefGoogle ScholarPubMed
174Ronnblom, L. and Alm, G.V. (2002) The natural interferon-alpha producing cells in systemic lupus erythematosus. Hum Immunol 63, 1181-1193CrossRefGoogle ScholarPubMed
175Bennett, L. et al. (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 197, 711-723CrossRefGoogle ScholarPubMed
176Baechler, E.C. et al. (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 100, 2610-2615CrossRefGoogle ScholarPubMed
177Koutouzov, S., Mathian, A. and Dalloul, A. (2006) Type-I interferons and systemic lupus erythematosus. Autoimmun Rev 5, 554-562CrossRefGoogle ScholarPubMed
178Meyers, J.A. et al. (2006) Blockade of TLR9 agonist-induced type I interferons promotes inflammatory cytokine IFN-gamma and IL-17 secretion by activated human PBMC. Cytokine 35, 235-246CrossRefGoogle ScholarPubMed
179Nagai, T. et al. (2003) Timing of IFN-beta exposure during human dendritic cell maturation and naive Th cell stimulation has contrasting effects on Th1 subset generation: a role for IFN-beta-mediated regulation of IL-12 family cytokines and IL-18 in naive Th cell differentiation. J Immunol 171, 5233-5243CrossRefGoogle ScholarPubMed
180Dhodapkar, K.M. et al. (2007) Selective blockade of the inhibitory Fc gamma receptor (Fc gamma RIIB) in human dendritic cells and monocytes induces a type I interferon response program. J Exp Med 204, 1359-1369CrossRefGoogle Scholar
181Park, Y.B. et al. (1998) Elevated interleukin-10 levels correlated with disease activity in systemic lupus erythematosus. Clin Exp Rheumatol 16, 283-288Google ScholarPubMed
182Hagiwara, E. et al. (1996) Disease severity in patients with systemic lupus erythematosus correlates with an increased ratio of interleukin-10: interferon-gamma-secreting cells in the peripheral blood. Arthritis Rheum 39, 379-385CrossRefGoogle ScholarPubMed
183Ji, J.D. et al. (2003) Inhibition of interleukin 10 signaling after Fc receptor ligation and during rheumatoid arthritis. J Exp Med 197, 1573-1583CrossRefGoogle ScholarPubMed
184Ishida, H. et al. (1994) Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W F1 mice. J Exp Med 179, 305-310CrossRefGoogle ScholarPubMed
185Blenman, K.R. et al. (2006) IL-10 regulation of lupus in the NZM2410 murine model. Lab Invest 86, 1136-1148CrossRefGoogle ScholarPubMed
186Yin, Z. et al. (2002) IL-10 regulates murine lupus. J Immunol 169, 2148-2155CrossRefGoogle ScholarPubMed
187Llorente, L. et al. (2000) Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus. Arthritis Rheum 43, 1790-18003.0.CO;2-2>CrossRefGoogle ScholarPubMed
188Jacob, C.O., van der Meide, P.H. and McDevitt, H.O. (1987) In vivo treatment of (NZB X NZW)F1 lupus-like nephritis with monoclonal antibody to gamma interferon. J Exp Med 166, 798-803CrossRefGoogle ScholarPubMed
189Ozmen, L. et al. (1995) Experimental therapy of systemic lupus erythematosus: the treatment of NZB/W mice with mouse soluble interferon-gamma receptor inhibits the onset of glomerulonephritis. Eur J Immunol 25, 6-12CrossRefGoogle ScholarPubMed
190Balomenos, D., Rumold, R. and Theofilopoulos, A.N. (1998) Interferon-gamma is required for lupus-like disease and lymphoaccumulation in MRL-lpr mice. J Clin Invest 101, 364-371CrossRefGoogle ScholarPubMed
191Singh, R.R. et al. (2003) Differential contribution of IL-4 and STAT6 vs STAT4 to the development of lupus nephritis. J Immunol 170, 4818-4825CrossRefGoogle Scholar
192Weaver, C.T. et al. (2007) IL-17 Family Cytokines and the Expanding Diversity of Effector T Cell Lineages. Annu Rev Immunol 25, 821-852CrossRefGoogle ScholarPubMed
193Clynes, R., Dumitru, C. and Ravetch, J.V. (1998) Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279, 1052-1054CrossRefGoogle ScholarPubMed
194Bergtold, A. et al. (2006) FcR-bearing myeloid cells are responsible for triggering murine lupus nephritis. J Immunol 177, 7287-7295CrossRefGoogle ScholarPubMed
195Chan, O.T. et al. (1999) A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med 189, 1639-1648CrossRefGoogle ScholarPubMed
196Matsumoto, K. et al. (2003) Fc receptor-independent development of autoimmune glomerulonephritis in lupus-prone MRL/lpr mice. Arthritis Rheum 48, 486-494CrossRefGoogle ScholarPubMed
197Peterson, K.S. et al. (2004) Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli. J Clin Invest 113, 1722-1733CrossRefGoogle ScholarPubMed
198Anders, H.J. et al. (2004) Late onset of treatment with a chemokine receptor CCR1 antagonist prevents progression of lupus nephritis in MRL-Fas(lpr) mice. J Am Soc Nephrol 15, 1504-1513CrossRefGoogle ScholarPubMed
199Anders, H.J., Ninichuk, V. and Schlondorff, D. (2006) Progression of kidney disease: blocking leukocyte recruitment with chemokine receptor CCR1 antagonists. Kidney Int 69, 29-32CrossRefGoogle ScholarPubMed
200Hahn, B.H. (1997) An overview of the pathogenesis of systemic lupus erythematosus. In Dubois's Lupus Erythematosus (5th edn) (Wallace, D.J. and Hahn, B.H., eds), pp 69-76, Williams & WilkinsGoogle Scholar
201Akkerman, A. et al. (2004) CTLA4Ig prevents initiation but not evolution of anti-phospholipid syndrome in NZW/BXSB mice. Autoimmunity 37, 445-451CrossRefGoogle Scholar
202Theofilopoulos, A.N. and Dixon, F.J. (1985) Murine models of systemic lupus erythematosus. Adv Immunol 37, 269-390CrossRefGoogle ScholarPubMed
203Furie, R. (2006) Abetimus sodium (riquent) for the prevention of nephritic flares in patients with systemic lupus erythematosus. Rheum Dis Clin North Am 32, 149-156CrossRefGoogle ScholarPubMed
204Davis, J.C. Jr. et al. (1999) Recombinant human DNase I (rhDNase) in patients with lupus nephritis. Lupus 8, 68-76CrossRefGoogle ScholarPubMed
205Gunnarsson, I. et al. (2007) Histopathologic and clinical outcome of rituximab treatment in patients with cyclophosphamide-resistant proliferative lupus nephritis. Arthritis Rheum 56, 1263-1272CrossRefGoogle ScholarPubMed
206Eisenberg, R. (2006) Targeting B cells in SLE: the experience with rituximab treatment (anti-CD20). Endocr Metab Immune Disord Drug Targets 6, 345-350CrossRefGoogle ScholarPubMed
207Schiffer, L. et al. Activated renal macrophages are markers of disease onset and disease remission in lupus nephritis. J Immunol (in press)Google Scholar
208Kilmon, M. et al. (2005) Low-affinity, Smith antigen-specific B cells are tolerized by dendritic cells and macrophages. J Immunol 175, 37-41CrossRefGoogle ScholarPubMed

Further reading, resources and contacts

A list of current clinical trials in SLE can be found at:

Wiesendanger, M. et al. (2006) Novel therapeutics for systemic lupus erythematosus. Curr Opin Rheumatol 18, 227-235CrossRefGoogle ScholarPubMed
Furie, R. (2006) Abetimus sodium (riquent) for the prevention of nephritic flares in patients with systemic lupus erythematosus. Rheum Dis Clin North Am 32, 149-156CrossRefGoogle ScholarPubMed
Fairhurst, A.M., Wandstrat, A.E. and Wakeland, E.K. (2006) Systemic lupus erythematosus: multiple immunological phenotypes in a complex genetic disease. Adv Immunol 92, 1-69CrossRefGoogle Scholar
Davidson, A. and Aranow, C. (2006) Pathogenesis and treatment of systemic lupus erythematosus nephritis. Curr Opin Rheumatol 18, 468-475Google ScholarPubMed
Wiesendanger, M. et al. (2006) Novel therapeutics for systemic lupus erythematosus. Curr Opin Rheumatol 18, 227-235CrossRefGoogle ScholarPubMed
Furie, R. (2006) Abetimus sodium (riquent) for the prevention of nephritic flares in patients with systemic lupus erythematosus. Rheum Dis Clin North Am 32, 149-156CrossRefGoogle ScholarPubMed
Fairhurst, A.M., Wandstrat, A.E. and Wakeland, E.K. (2006) Systemic lupus erythematosus: multiple immunological phenotypes in a complex genetic disease. Adv Immunol 92, 1-69CrossRefGoogle Scholar
Davidson, A. and Aranow, C. (2006) Pathogenesis and treatment of systemic lupus erythematosus nephritis. Curr Opin Rheumatol 18, 468-475Google ScholarPubMed