Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T05:21:42.678Z Has data issue: false hasContentIssue false

Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control

Published online by Cambridge University Press:  07 April 2010

Thomas Bjarnsholt
Affiliation:
Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark. Department of Clinical Microbiology, University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
Tim Tolker-Nielsen
Affiliation:
Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.
Niels Høiby
Affiliation:
Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark. Department of Clinical Microbiology, University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
Michael Givskov*
Affiliation:
Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.
*
*Corresponding author: Michael Givskov, Department of International Health, Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark. E-mail: [email protected]

Abstract

Pseudomonas aeruginosa is the best described bacterium with regards to quorum sensing (QS), in vitro biofilm formation and the development of antibiotic tolerance. Biofilms composed of P. aeruginosa are thought to be the underlying cause of many chronic infections, including those in wounds and in the lungs of patients with cystic fibrosis. In this review, we provide an overview of the molecular mechanisms involved in QS, QS-enabled virulence, biofilm formation and biofilm-enabled antibiotic tolerance. We now have substantial knowledge of the multicellular behaviour of P. aeruginosa in vitro. A major task for the future is to investigate how such in vitro data correlate with the in vivo behaviour of P. aeruginosa, and how to treat chronic infections of this bacterium in patients.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Taga, M.E. and Bassler, B.L. (2003) Chemical communication among bacteria. Proceedings of the National Academy of Sciences of the United States of America 100, 14549-54CrossRefGoogle ScholarPubMed
2Zhu, J. et al. (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America 99, 3129-3134CrossRefGoogle ScholarPubMed
3Gilligan, P.H. (1991) Microbiology of airway disease in patients with cystic fibrosis. Clinical Microbiology Reviews 4, 35-51CrossRefGoogle ScholarPubMed
4Whiteley, M., Lee, K.M. and Greenberg, E.P. (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 96, 13904-13909CrossRefGoogle ScholarPubMed
5Eberl, L. et al. (1996) Involvement of N-acyl-L-hormoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Molecular Microbiology 20, 127-136CrossRefGoogle ScholarPubMed
6Kohler, T. et al. (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. Journal of Bacteriology 182, 5990-5996CrossRefGoogle ScholarPubMed
7Huber, B. et al. (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147, 2517-2528CrossRefGoogle ScholarPubMed
8Federle, M.J. and Bassler, B.L. (2003) Interspecies communication in bacteria. Journal of Clinical Investigation 112, 1291-1299CrossRefGoogle ScholarPubMed
9Magnuson, R., Solomon, J. and Grossman, A.D. (1994) Biochemical and genetic characterization of a competence pheromone from B subtilis. Cell 77, 207-216CrossRefGoogle ScholarPubMed
10Qin, X. et al. (2000) Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infection and Immunity 68, 2579-2586CrossRefGoogle Scholar
11Kong, K.F., Vuong, C. and Otto, M. (2006) Staphylococcus quorum sensing in biofilm formation and infection. International Journal of Medical Microbiology 296, 133-139CrossRefGoogle ScholarPubMed
12Boles, B.R. and Horswill, A.R. (2008) Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathogens 4, e1000052CrossRefGoogle ScholarPubMed
13Winans, S.C. and Bassler, B.L. (2002). Mob psychology Journal of Bacteriology 184, 873-883CrossRefGoogle Scholar
14Stover, C.K. et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959-964CrossRefGoogle Scholar
15Murray, P.R. et al. (2002) Medical Microbiology. Mosby, St LouisGoogle Scholar
16van Delden, C. and Iglewski, B.H. (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerging Infectious Diseases 4, 551-560CrossRefGoogle ScholarPubMed
17Lyczak, J.B., Cannon, C.L. and Pier, G.B. (2000) Establishment of Pseudomonas aeruginosa infection, lessons from a versatile opportunist Microbes and Infection 2, 1051-1060CrossRefGoogle ScholarPubMed
18Koch, C. and Hoiby, N. (1993) Pathogenesis of cystic fibrosis. Lancet 341, 1065-1069CrossRefGoogle ScholarPubMed
19Jensen, P.O. et al. (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153, 1329-1338CrossRefGoogle ScholarPubMed
20Tang, H.B. et al. (1996) Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infection and Immunity 64, 37-43CrossRefGoogle Scholar
21Vasil, M.L., Grant, C.C. and Prince, R.W. (1989) Regulation of exotoxin A synthesis in Pseudomonas aeruginosa, characterization of toxA-lacZ fusions in wild-type and mutant strains. Molecular Microbiology 3, 371-381CrossRefGoogle ScholarPubMed
22Nicas, T.I. et al. (1985) Role of exoenzyme S in chronic Pseudomonas aeruginosa lung infections. European Journal of Clinical Microbiology 4, 175-179CrossRefGoogle ScholarPubMed
23Woods, D.E. et al. (1982) Contribution of toxin A and elastase to virulence of Pseudomonas aeruginosa in chronic lung infections of rats. Infection and Immunity 36, 1223-1228CrossRefGoogle ScholarPubMed
24Preston, M.J. et al. (1997) Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections. Infection and Immunity 65, 3086-3090CrossRefGoogle Scholar
25Howe, T.R. and Iglewski, B.H. (1984) Isolation and characterization of alkaline protease-deficient mutants of Pseudomonas aeruginosa in vitro and in a mouse eye model. Infection and Immunity 43, 1058-1063CrossRefGoogle Scholar
26Vasil, M.L. et al. (1991) Phospholipase C: molecular biology and contribution to the pathogenesis of Pseudomonas aeruginosa. Antibiotics and Chemotherapy 44, 34-47CrossRefGoogle Scholar
27Cox, C.D. (1982) Effect of pyochelin on the virulence of Pseudomonas aeruginosa. Infection and Immunity 36, 17-23CrossRefGoogle ScholarPubMed
28Pedersen, S.S. et al. (1992) Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax 47, 6-13CrossRefGoogle ScholarPubMed
29Tang, H., Kays, M. and Prince, A. (1995) Role of Pseudomonas aeruginosa pili in acute pulmonary infection. Infection and Immunity 63, 1278-1285CrossRefGoogle ScholarPubMed
30Jendrossek, V. et al. (2003) Apoptotic response of Chang cells to infection with Pseudomonas aeruginosa strains PAK and PAO-I: molecular ordering of the apoptosis signaling cascade and role of type IV pili. Infection and Immunity 71, 2665-2673CrossRefGoogle ScholarPubMed
31Stover, C.K. et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959-964CrossRefGoogle Scholar
32Williams, P. et al. (2000) Quorum sensing and the population-dependent control of virulence. Philosophical Transactions of the Royal Society of London B Biological Sciences 355, 667-680CrossRefGoogle ScholarPubMed
33van Delden, C. and Iglewski, B.H. (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerging Infectious Diseases 4, 551-560CrossRefGoogle ScholarPubMed
34Latifi, A. et al. (1995) Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Molecular Microbiology 17, 333-343CrossRefGoogle ScholarPubMed
35Hentzer, M. et al. (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO Journal 22, 3803-3815CrossRefGoogle ScholarPubMed
36Wagner, V.E. et al. (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. Journal of Bacteriology 185, 2080-2095CrossRefGoogle ScholarPubMed
37Schuster, M. et al. (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. Journal of Bacteriology 185, 2066-2079CrossRefGoogle Scholar
38O'Sullivan, D.J. and O'Gara, F. (1992) Traits of fluorescent Pseudomonas spp involved in suppression of plant root pathogens. Microbiological Reviews 56, 662-676CrossRefGoogle ScholarPubMed
39Rasmussen, T.B. et al. (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. Journal of Bacteriology 187, 1799-1814CrossRefGoogle ScholarPubMed
40Bjarnsholt, T. et al. (2005) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151, 373-383CrossRefGoogle ScholarPubMed
41Bjarnsholt, T. et al. (2005) Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151, 3873-3880CrossRefGoogle ScholarPubMed
42Christensen, L.D. et al. (2007) Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. Microbiology 153, 2312-2320CrossRefGoogle Scholar
43Jensen, P.O. et al. (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153, 1329-1338CrossRefGoogle ScholarPubMed
44Rasmussen, T.B. et al. (2005) Idendity and effects of quorum sensing inhibitors produced by Penicillum species. Microbiology 151, 1325-1340CrossRefGoogle Scholar
45Wu, H. et al. (2001) Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology 147, 1105-1113CrossRefGoogle ScholarPubMed
46Pesci, E.C. et al. (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. Journal of Bacteriology 179, 3127-3132CrossRefGoogle ScholarPubMed
47Lequette, Y. et al. (2006) A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. Journal of Bacteriology 188, 3365-3370CrossRefGoogle ScholarPubMed
48Pesci, E.C. et al. (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. Journal of Bacteriology 179, 3127-3132CrossRefGoogle ScholarPubMed
49Pearson, J.P., van Delden, C. and Iglewski, B.H. (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. Journal of Bacteriology 181, 1203-1210CrossRefGoogle ScholarPubMed
50Seed, P.C., Passador, L. and Iglewski, B.H. (1995) Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI, an autoinduction regulatory hierarchy. Journal of Bacteriology 177, 654-659CrossRefGoogle ScholarPubMed
51Juhas, M. et al. (2004) Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology 150, 831-841CrossRefGoogle ScholarPubMed
52Skindersoe, M.E. et al. (2008) Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 52, 3648-3663CrossRefGoogle ScholarPubMed
53de Kievit, T.R. et al. (2002) Role of the Pseudomonas aeruginosa las and rhl quorum-sensing systems in rhlI regulation. FEMS Microbiology Letters 212, 101-106CrossRefGoogle ScholarPubMed
54Medina, G. et al. (2003) Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiology 149, 3073-3081CrossRefGoogle ScholarPubMed
55Pearson, J.P., van Delden, C. and Iglewski, B.H. (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. Journal of Bacteriology 181, 1203-1210CrossRefGoogle ScholarPubMed
56Dubern, J.F. and Diggle, S.P. (2008) Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Molecular Biosystems 4, 882-888CrossRefGoogle ScholarPubMed
57McKnight, S.L., Iglewski, B.H. and Pesci, E.C. (2000) The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. Journal of Bacteriology 182, 2702-2708CrossRefGoogle ScholarPubMed
58McGrath, S., Wade, D.S. and Pesci, E.C. (2004) Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS) FEMS. Microbiology Letters 230, 27-34CrossRefGoogle Scholar
59Pesci, E.C. et al. (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 96, 11229-11234CrossRefGoogle ScholarPubMed
60Diggle, S.P. et al. (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Molecular Microbiology 50, 29-43CrossRefGoogle ScholarPubMed
61McKnight, S.L., Iglewski, B.H. and Pesci, E.C. (2000) The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. Journal of Bacteriology 182, 2702-2708CrossRefGoogle ScholarPubMed
62Gallagher, L.A. and Manoil, C. (2001) Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. Journal of Bacteriology 183, 6207-6214CrossRefGoogle ScholarPubMed
63Collier, D.N. et al. (2002) A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiology Letters 215, 41CrossRefGoogle ScholarPubMed
64Walters, M.C. et al. (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrobial Agents and Chemotherapy 47, 317-323CrossRefGoogle ScholarPubMed
65Nivens, D.E. et al. (2001) Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. Journal of Bacteriology 183, 1047-1057CrossRefGoogle ScholarPubMed
66Allesen-Holm, M. et al. (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Molecular Microbiology 59, 1114-1128CrossRefGoogle ScholarPubMed
67Simpson, J.A., Smith, S.E. and Dean, R.T. (1989) Scavenging by alginate of free radicals released by macrophages. Free Radical Biology and Medicine 6, 347-353CrossRefGoogle ScholarPubMed
68Allison, D.G. and Matthews, M.J. (1992) Effect of polysaccharide interactions on antibiotic susceptibility of Pseudomonas aeruginosa. Journal of Applied Bacteriology 73, 484-488CrossRefGoogle ScholarPubMed
69O'Toole, G., Kaplan, H.B. and Kolter, R. (2000) Biofilm formation as microbial development. Annual Review of Microbiology 54, 49-79CrossRefGoogle ScholarPubMed
70Sauer, K. (2003) The genomics and proteomics of biofilm formation. Genome Biology 4, 219CrossRefGoogle ScholarPubMed
71Petrova, O.E. and Sauer, K. (2009) A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. PLoS Pathogens 5, e1000668CrossRefGoogle ScholarPubMed
72Purevdorj, B., Costerton, J.W. and Stoodley, P. (2002) Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology 68, 4457-4464CrossRefGoogle ScholarPubMed
73Reimmann, C. et al. (2002) Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa. Microbiology 148, 923-932CrossRefGoogle ScholarPubMed
74Hentzer, M., Eberl, L. and Givskov, M. (2005) Transcriptome analysis of Pseudomonasaeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms 2, 37-61CrossRefGoogle Scholar
75Stoodley, P. et al. (2001) Growth and detachment of cell clusters from mature mixed-species biofilms. Applied and Environmental Microbiology 67, 5608-5613CrossRefGoogle ScholarPubMed
76Costerton, J.W., Stewart, P.S. and Greenberg, E.P. (1999) Bacterial biofilms: a common cause of persistent infections. Science 284, 1318-1322CrossRefGoogle ScholarPubMed
77Webb, J.S. et al. (2003) Cell death in Pseudomonas aeruginosa biofilm development. Journal of Bacteriology 185, 4585-4592CrossRefGoogle ScholarPubMed
78Hickman, J.W., Tifrea, D.F. and Harwood, C.S. (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proceedings of the National Academy of Sciences of the United States of America 102, 14422-14427CrossRefGoogle ScholarPubMed
79Meissner, A. et al. (2007) Pseudomonas aeruginosa cupA-encoded fimbriae expression is regulated by a GGDEF and EAL domain-dependent modulation of the intracellular level of cyclic diguanylate. Environmental Microbiology 9, 2475-2485CrossRefGoogle ScholarPubMed
80Gjermansen, M. et al. (2005) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environmental Microbiology 7, 894-906CrossRefGoogle ScholarPubMed
81Gjermansen, M. et al. (2009) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Molecular Microbiology 75, 815-826CrossRefGoogle ScholarPubMed
82Schleheck, D. et al. (2009) Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS One 4, e5513CrossRefGoogle ScholarPubMed
83Barraud, N. et al. (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. Journal of Bacteriology 188, 7344-7353CrossRefGoogle ScholarPubMed
84Barraud, N. et al. (2009) Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic diguanosine-5'-monophosphate levels and enhanced dispersal. Journal of Bacteriology 191, 7333-7342CrossRefGoogle Scholar
85Davies, D.G. and Marques, C.N. (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. Journal of Bacteriology 191, 1393-1403CrossRefGoogle ScholarPubMed
86Eberl, L. et al. (1996) Involvement of N-acyl-L-hormoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Molecular Microbiology 20, 127-136CrossRefGoogle ScholarPubMed
87Davies, D.G. et al. (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295-298CrossRefGoogle ScholarPubMed
88Pamp, S.J. et al. (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Molecular Microbiology 68, 223-240CrossRefGoogle Scholar
89Pamp, S.J. and Tolker-Nielsen, T. (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. Journal of Bacteriology 189, 2531-2539CrossRefGoogle ScholarPubMed
90Yang, L. et al. (2009) Pyoverdine and PQS mediated subpopulation interactions involved in Pseudomonas aeruginosa biofilm formation. Molecular Microbiology 74, 1380-1392CrossRefGoogle ScholarPubMed
91Yang, L. et al. (2007) Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153, 1318-1328CrossRefGoogle ScholarPubMed
92Heydorn, A. et al. (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to- cell signaling, and stationary-phase sigma factor expression. Applied and Environmental Microbiology 68, 2008-2017CrossRefGoogle Scholar
93Kjelleberg, S. and Molin, S. (2002) Is there a role for quorum sensing signals in bacterial biofilms? Current Opinion in Microbiology 5, 254-258CrossRefGoogle Scholar
94Beatson, S.A. et al. (2002) Quorum sensing is not required for twitching motility in Pseudomonas aeruginosa. Journal of Bacteriology 184, 3598-3604CrossRefGoogle Scholar
95Fox, A. et al. (2008) Emergence of secretion-defective sublines of Pseudomonas aeruginosa PAO1 resulting from spontaneous mutations in the vfr global regulatory gene. Applied and Environmental Microbiology 74, 1902-1908CrossRefGoogle ScholarPubMed
96Schaber, J.A. et al. (2007) Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling. Infection and Immunity 75, 3715-3721CrossRefGoogle ScholarPubMed
97Banin, E., Vasil, M.L. and Greenberg, E.P. (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proceedings of the National Academy of Sciences of the United States of America 102, 11076-11081CrossRefGoogle ScholarPubMed
98Whitchurch, C.B. et al. (2002) Extracellular DNA required for bacterial biofilm formation. Science 295, 1487CrossRefGoogle ScholarPubMed
99MacLehose, H.G., Gilbert, P. and Allison, D.G. (2004) Biofilms, homoserine lactones and biocide susceptibility. Journal of Antimicrobial Chemotherapy 53, 180-184CrossRefGoogle ScholarPubMed
100Charlton, T.S. et al. (2000) A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. Environmental Microbiology 2, 530-541CrossRefGoogle Scholar
101Donlan, R.M. and Costerton, J.W. (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews 15, 167-193CrossRefGoogle ScholarPubMed
102Drenkard, E. (2003) Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes and Infection 5, 1213-1219CrossRefGoogle ScholarPubMed
103Bjarnsholt, T. et al. (2007) Silver against Pseudomonas aeruginosa biofilms. Acta Pathologica, Microbiologica et Immunologica Scandinavica 115, 921-928CrossRefGoogle ScholarPubMed
104Bagge, N. et al. (2004) Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrobial Agents and Chemotherapy 48, 1175-1187CrossRefGoogle ScholarPubMed
105Mah, T.F. et al. (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426, 306-310CrossRefGoogle ScholarPubMed
106Elkins, J.G. et al. (1999) Protective role of catalase in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide. Applied and Environmental Microbiology 65, 4594-4600CrossRefGoogle ScholarPubMed
107Stewart, P.S. et al. (2000) Effect of catalase on hydrogen peroxide penetration into Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology 66, 836-838CrossRefGoogle ScholarPubMed
108Roberts, M.E. and Stewart, P.S. (2004) Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation. Antimicrobial Agents and Chemotherapy 48, 48-52CrossRefGoogle ScholarPubMed
109Hoyle, B.D. and Costerton, J.W. (1991) Bacterial resistance to antibiotics: the role of biofilms. Progress in Drug Research 37, 91-105Google ScholarPubMed
110Teitzel, G.M. and Parsek, M.R. (2003) Heavy Metal Resistance of Biofilm and Planktonic Pseudomonas aeruginosa. Applied and Environmental Microbiology 69, 2313-2320CrossRefGoogle ScholarPubMed
111Haagensen, J.A. et al. (2006) Differentiation and distribution of colistin/SDS tolerant cells in Pseudomonas aeruginosa flow-cell biofilms. Journal of Bacteriology 189, 28-37CrossRefGoogle Scholar
112Walters, MC III. et al. (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrobial Agents and Chemotherapy 47, 317-323CrossRefGoogle ScholarPubMed
113Shih, P.C. and Huang, C.T. (2002) Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. Journal of Antimicrobial Chemotherapy 49, 309-314CrossRefGoogle ScholarPubMed
114Hentzer, M. et al. (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148, 87-102CrossRefGoogle ScholarPubMed
115Hassett, D.J. et al. (1999) Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Molecular Microbiology 34, 1082-1093CrossRefGoogle ScholarPubMed
116Mulcahy, H., Charron-Mazenod, L. and Lewenza, S. (2008) Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathogens 4, e1000213CrossRefGoogle ScholarPubMed
117Bjarnsholt, T. et al. (2008) Why chronic wounds will not heal: a novel hypothesis. Wound Repair and Regeneration 16, 2-10CrossRefGoogle ScholarPubMed
118Kirketerp-Moller, K. et al. (2008) Distribution, organization, and ecology of bacteria in chronic wounds. Journal of Clinical Microbiology 46, 2717-2722CrossRefGoogle ScholarPubMed
119Barnsholt, T. et al. (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatric Pulmonology 44, 547-558CrossRefGoogle Scholar
120Kerem, B. et al. (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073-1080CrossRefGoogle ScholarPubMed
121Riordan, J.R. et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066-1073CrossRefGoogle ScholarPubMed
122Hansen, C.R., Pressler, T. and Hoiby, N. (2008) Early aggressive eradication therapy for intermittent Pseudomonas aeruginosa airway colonization in cystic fibrosis patients: 15 years experience. Journal of Cystic Fibrosis 7, 523-530CrossRefGoogle Scholar
123Bjarnsholt, T. et al. (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatric Pulmonology 44, 547-558CrossRefGoogle ScholarPubMed
124Kirketerp-Moller, K. et al. (2008) Distribution, organization, and ecology of bacteria in chronic wounds. Journal of Clinical Microbiology 46, 2717-2722CrossRefGoogle ScholarPubMed
125Jensen, P.O. et al. (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153, 1329-1338CrossRefGoogle ScholarPubMed
126Alhede, M. et al. (2009) Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 155, 3500-3508CrossRefGoogle Scholar
127van Gennip, M. et al. (2009) Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. Acta Pathologica, Microbiologica et Immunologica Scandinavica 117, 537-546CrossRefGoogle ScholarPubMed
128Wysocki, A.B., Staiano-Coico, L. and Grinnell, F. (1993) Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9. Journal of Investigative Dermatology 101, 64-68CrossRefGoogle ScholarPubMed
129Gaggar, A. et al. (2007) Matrix metalloprotease-9 dysregulation in lower airway secretions of cystic fibrosis patients. American Journal of Physiology Lung Cellular and Molecular Physiology 293, L96-L104CrossRefGoogle ScholarPubMed
130Fazli, M. et al. (2009) Non-Random Distribution of Pseudomonas aeruginosa and Staphylococcus aureus in Chronic Wounds. Journal of Clinical Microbiology 47, 4084-4089CrossRefGoogle Scholar
131Alhede, M. et al. (2009) Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 155, 3500-3508CrossRefGoogle Scholar
132Morici, L.A. et al. (2007) Pseudomonas aeruginosa AlgR represses the Rhl quorum-sensing system in a biofilm-specific manner. Journal of Bacteriology 189, 7752-7764CrossRefGoogle Scholar
133Wu, L. et al. (2005) Recognition of host immune activation by Pseudomonas aeruginosa. Science 309, 774-777CrossRefGoogle ScholarPubMed
134Kristiansen, S. et al. (2008) The Pseudomonas aeruginosa autoinducer dodecanoyl-homoserine lactone inhibits the putrescine synthesis in human cells. Acta Pathologica, Microbiologica et Immunologica Scandinavica 116, 361-371CrossRefGoogle ScholarPubMed
135Skindersoe, M.E. et al. (2009) Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation. FEMS Immunology and Medical Microbiology 55, 335-345CrossRefGoogle ScholarPubMed
136Wu, H. et al. (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. Journal of Antimicrobial Chemotherapy 53, 1054-1061CrossRefGoogle ScholarPubMed
137Rasch, M. et al. (2004) An inhibitor of bacterial quorum sensing reduces mortalities caused by Vibriosis in rainbow trout (Oncorhynchus mykiss, Walbaum). Systematic and Applied Microbiology 27, 350-359CrossRefGoogle ScholarPubMed
138Hodson, M.E. et al. (2003) Dornase alfa in the treatment of cystic fibrosis in Europe: a report from the Epidemiologic Registry of Cystic Fibrosis. Pediatric Pulmonology 36, 427-432CrossRefGoogle ScholarPubMed
139Hentzer, M. and Givskov, M. (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. Journal of Clinical Investigation 112, 1300-1307CrossRefGoogle ScholarPubMed
140de Nys, R. et al. (1993) New Halogenated furanones from the Marine alga Delisea pulchra. Tetrahedron 49, 11213-11220CrossRefGoogle Scholar
141Kjelleberg, S. et al. (1997) Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat Microbial Ecology 13, 85-93CrossRefGoogle Scholar
142Givskov, M. et al. (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. Journal of Bacteriology 178, 6618-6622CrossRefGoogle ScholarPubMed
143Wu, H. et al. (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. Journal of Antimicrobial Chemotherapy 53, 1054-1061CrossRefGoogle ScholarPubMed
144Kim, C. et al. (2008) Furanone derivatives as quorum-sensing antagonists of Pseudomonas aeruginosa. Applied Microbiology and Biotechnology 80, 37-47CrossRefGoogle ScholarPubMed
145Persson, T. et al. (2005) Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Organic and Biomolecular Chemistry 3, 253-262CrossRefGoogle ScholarPubMed
146Riedel, K. et al. (2006) Computer-aided design of agents that inhibit the cep quorum-sensing system of Burkholderia cenocepacia. Antimicrobial Agents and Chemotherapy 50, 318-323CrossRefGoogle ScholarPubMed
147Persson, T., Givskov, M. and Nielsen, J. (2005) Quorum sensing inhibition: targeting chemical communication in gram-negative bacteria. Current Medicinal Chemistry 12, 3103-3115CrossRefGoogle ScholarPubMed
148Olsen, J.A. et al. (2002) Synthesis of new 3- and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers. Bioorganic and Medicinal Chemistry Letters 12, 325-328CrossRefGoogle ScholarPubMed
149Muh, U. et al. (2006) Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrobial Agents and Chemotherapy 50, 3674-3679CrossRefGoogle Scholar
150Borlee, B.R. et al. (2008) Quorum-sensing signals in the microbial community of the cabbage white butterfly larval midgut. ISME Journal 2, 1101-1111CrossRefGoogle ScholarPubMed
151Geske, G.D., Mattmann, M.E. and Blackwell, H.E. (2008) Evaluation of a focused library of N-aryl L-homoserine lactones reveals a new set of potent quorum sensing modulators. Bioorganic and Medicinal Chemistry Letters 18, 5978-5981CrossRefGoogle ScholarPubMed
152Geske, G.D., O'Neill, J.C. and Blackwell, H.E. (2008) Expanding dialogues: from natural autoinducers to non-natural analogues that modulate quorum sensing in Gram-negative bacteria. Chemical Society Reviews 37, 1432-1447CrossRefGoogle ScholarPubMed
153Geske, G.D. et al. (2008) Comparative analyses of N-acylated homoserine lactones reveal unique structural features that dictate their ability to activate or inhibit quorum sensing. Chembiochem 9, 389-400CrossRefGoogle ScholarPubMed
154Geske, G.D. et al. (2007) Modulation of bacterial quorum sensing with synthetic ligands: systematic evaluation of N-acylated homoserine lactones in multiple species and new insights into their mechanisms of action. Journal of the American Chemical Society 129, 13613-13625CrossRefGoogle ScholarPubMed
155Mattmann, M.E. et al. (2008) Synthetic ligands that activate and inhibit a quorum-sensing regulator in Pseudomonas aeruginosa. Bioorganic and Medicinal Chemistry Letters 18, 3072-3075CrossRefGoogle ScholarPubMed
156Bottomley, M.J. et al. (2007) Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. Journal of Biological Chemistry 282, 13592-13600CrossRefGoogle ScholarPubMed
157Amara, N. et al. (2009) Covalent inhibition of bacterial quorum sensing. Journal of the American Chemical Society 131, 10610-10619CrossRefGoogle ScholarPubMed
158Yang, L. et al. (2009) Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrobial Agents and Chemotherapy 53, 2432-2443CrossRefGoogle ScholarPubMed
159Rasmussen, T.B. et al. (2005) Screening for Quorum Sensing Inhibitors Using a Novel Genetic System - the QSI Selector. Journal of Bacteriology 187, 1799-1814CrossRefGoogle ScholarPubMed
160Bjarnsholt, T. et al. (2010) In vitro screens for quorum sensing inhibitors and in vivo confirmation of their effect. Nature Protocols 5, 282-293CrossRefGoogle ScholarPubMed
161Tateda, K. et al. (2001) Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 45, 1930-1933CrossRefGoogle ScholarPubMed
162Hoffmann, N. et al. (2007) Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary growth phase killing of P aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr -/- mice. Antimicrobial Agents and Chemotherapy 51, 3677-3687CrossRefGoogle ScholarPubMed
163Kai, T. et al. (2009) A low concentration of azithromycin inhibits the mRNA expression of N-acyl homoserine lactone synthesis enzymes, upstream of lasI or rhlI, in Pseudomonas aeruginosa. Pulmonary Pharmacology and Therapeutics 22, 483-486CrossRefGoogle ScholarPubMed
164Saiman, L. (2004) The use of macrolide antibiotics in patients with cystic fibrosis. Current Opinion in Pulmonary Medicine 10, 515-523CrossRefGoogle ScholarPubMed
165Southern, K.W. and Barker, P.M. (2004) Azithromycin for cystic fibrosis. European Respiratory Journal 24, 834-838CrossRefGoogle ScholarPubMed
166Park, J. et al. (2008) Solenopsin A, a venom alkaloid from the fire ant Solenopsis invicta, inhibits quorum-sensing signaling in Pseudomonas aeruginosa. Journal of Infectious Diseases 198, 1198-1201CrossRefGoogle ScholarPubMed

Further reading, resources and contacts

The leading website on quorum sensing can be found at:

Williams, P. and Cámara, M. (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Current Opinion in Microbiology 12, 182-191CrossRefGoogle ScholarPubMed
Williams, P. and Cámara, M. (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Current Opinion in Microbiology 12, 182-191CrossRefGoogle ScholarPubMed