Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-08T07:54:22.418Z Has data issue: false hasContentIssue false

Epigenetic mechanisms regulating normal and malignant haematopoiesis: new therapeutic targets for clinical medicine

Published online by Cambridge University Press:  15 February 2010

Constanze Bonifer*
Affiliation:
Section of Experimental Haematology, Leeds Institute of Molecular Medicine, St James's University Hospital, University of Leeds, Leeds, LS97TF, UK.
David T. Bowen
Affiliation:
Section of Experimental Haematology, Leeds Institute of Molecular Medicine, St James's University Hospital, University of Leeds, Leeds, LS97TF, UK.
*
*Corresponding author: Constanze Bonifer, Section of Experimental Haematology, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, University of Leeds, Leeds, LS97TF, UK. E-mail: [email protected]

Abstract

It is now well established that epigenetic phenomena and aberrant gene regulation play a major role in carcinogenesis. These include aberrant gene silencing by imposing inactive histone marks on promoters, aberrant methylation of DNA at CpG islands, and the active repression of promoters by oncoproteins. In addition, many malignant cells also show aberrant gene activation due to constitutively active signalling. The next frontier in cancer research will be to examine how, at the molecular level, small mutations that alter the regulatory phenotype of a cell give rise after a number of cell divisions to the vast deregulation phenomena seen in malignant cells. This review outlines recent insights into how normal cell differentiation in the haematopoietic system is subverted in leukaemia and it introduces the molecular players involved in this process. It also summarises the results of recent clinical trials trying to reverse aberrant epigenetic regulation by employing agents influencing global epigenetic regulators.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Berger, S.L. et al. (2009) An operational definition of epigenetics. Genes and Development 23, 781-783CrossRefGoogle ScholarPubMed
2Ptashne, M. (2007) On the use of the word ‘epigenetic’. Current Biology 17, R233-236CrossRefGoogle ScholarPubMed
3Kornberg, R.D. and Lorch, Y. (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285-294CrossRefGoogle ScholarPubMed
4Luger, K. et al. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260CrossRefGoogle ScholarPubMed
5Robinson, P.J. and Rhodes, D. (2006) Structure of the ‘30 nm’ chromatin fibre: a key role for the linker histone. Current Opinion in Structural Biology 16, 336-343CrossRefGoogle ScholarPubMed
6Kouzarides, T. (2007) Chromatin modifications and their function. Cell 128, 693-705CrossRefGoogle ScholarPubMed
7Henikoff, S. (2008) Nucleosome destabilization in the epigenetic regulation of gene expression. Nature Reviews Genetics 9, 15-26CrossRefGoogle ScholarPubMed
8Wang, Z. et al. (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019-1031CrossRefGoogle ScholarPubMed
9Metivier, R. et al. (2003) Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115, 751-763CrossRefGoogle ScholarPubMed
10Chen, T. and Li, E. (2006) Establishment and maintenance of DNA methylation patterns in mammals. Current Topics in Microbiology and Immunology 301, 179-201Google ScholarPubMed
11Lachner, M. et al. (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116-120CrossRefGoogle ScholarPubMed
12Bannister, A.J. et al. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120-124CrossRefGoogle ScholarPubMed
13Wang, L. et al. (2004) Hierarchical recruitment of polycomb group silencing complexes. Molecular Cell 14, 637-646CrossRefGoogle ScholarPubMed
14Klose, R.J. and Bird, A.P. (2006) Genomic DNA methylation: the mark and its mediators. Trends in Biochemical Sciences 31, 89-97CrossRefGoogle ScholarPubMed
15Smallwood, A. et al. (2007) Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes and Development 21, 1169-1178CrossRefGoogle ScholarPubMed
16Makar, K.W. et al. (2003) Active recruitment of DNA methyltransferases regulates interleukin 4 in thymocytes and T cells. Nature Immunology 4, 1183-1190CrossRefGoogle ScholarPubMed
17Taniuchi, I. et al. (2002) Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621-633CrossRefGoogle ScholarPubMed
18Taniuchi, I. et al. (2002) Evidence for distinct CD4 silencer functions at different stages of thymocyte differentiation. Molecular Cell 10, 1083-1096CrossRefGoogle ScholarPubMed
19Esteve, P.O. et al. (2006) Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes and Development 20, 3089-3103CrossRefGoogle ScholarPubMed
20Katsumoto, T. et al. (2006) MOZ is essential for maintenance of hematopoietic stem cells. Genes and Development 20, 1321-1330CrossRefGoogle ScholarPubMed
21Jude, C.D. et al. (2007) Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell 1, 324-337CrossRefGoogle ScholarPubMed
22McMahon, K.A. et al. (2007) Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell 1, 338-345CrossRefGoogle Scholar
23Heuser, M. et al. (2009) Loss of MLL5 results in pleiotropic hematopoietic defects, reduced neutrophil immune function, and extreme sensitivity to DNA demethylation. Blood 113, 1432-1443CrossRefGoogle ScholarPubMed
24Hutchins, A.S. et al. (2002) Gene silencing quantitatively controls the function of a developmental trans-activator. Molecular Cell 10, 81-91CrossRefGoogle ScholarPubMed
25Bultman, S.J., Gebuhr, T.C. and Magnuson, T. (2005) A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in beta-globin expression and erythroid development. Genes and Development 19, 2849-2861CrossRefGoogle ScholarPubMed
26Griffin, C.T., Brennan, J. and Magnuson, T. (2008) The chromatin-remodeling enzyme BRG1 plays an essential role in primitive erythropoiesis and vascular development. Development 135, 493-500CrossRefGoogle ScholarPubMed
27Broske, A.M. et al. (2009) DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nature Genetics 41, 1207-1215CrossRefGoogle ScholarPubMed
28Schwartz, Y.B. and Pirrotta, V. (2007) Polycomb silencing mechanisms and the management of genomic programmes. Nature Reviews Genetics 8, 9-22CrossRefGoogle ScholarPubMed
29Park, I.K. et al. (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302-305CrossRefGoogle ScholarPubMed
30Lessard, J. and Sauvageau, G. (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255-260CrossRefGoogle ScholarPubMed
31Kyba, M., Perlingeiro, R.C. and Daley, G.Q. (2002) HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109, 29-37CrossRefGoogle ScholarPubMed
32Iwama, A. et al. (2004) Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21, 843-851CrossRefGoogle ScholarPubMed
33Wang, H. et al. (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873-878CrossRefGoogle ScholarPubMed
34Cao, R., Tsukada, Y. and Zhang, Y. (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Molecular Cell 20, 845-854CrossRefGoogle ScholarPubMed
35Cao, R. et al. (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039-1043CrossRefGoogle ScholarPubMed
36Mahmoudi, T. et al. (2003) GAGA facilitates binding of Pleiohomeotic to a chromatinized Polycomb response element. Nucleic Acids Research 31, 4147-4156CrossRefGoogle ScholarPubMed
37Breiling, A. et al. (2001) General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412, 651-655CrossRefGoogle ScholarPubMed
38Dellino, G.I. et al. (2004) Polycomb silencing blocks transcription initiation. Molecular Cell 13, 887-893CrossRefGoogle ScholarPubMed
39Stock, J.K. et al. (2007) Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nature Cell Biology 9, 1428-1435CrossRefGoogle ScholarPubMed
40Hu, M. et al. (1997) Multilineage gene expression precedes commitment in the hemopoietic system. Genes and Development 11, 774-785CrossRefGoogle ScholarPubMed
41Enver, T. and Greaves, M. (1998) Loops, lineage, and leukemia. Cell 94, 9-12CrossRefGoogle ScholarPubMed
42Miyamoto, T. et al. (2002) Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Developmental Cell 3, 137-147CrossRefGoogle ScholarPubMed
43Gorczynski, M.J. et al. (2007) Allosteric inhibition of the protein-protein interaction between the leukemia-associated proteins Runx1 and CBFbeta. Chemistry and Biology 14, 1186-1197CrossRefGoogle ScholarPubMed
44Mansson, R. et al. (2007) Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity 26, 407-419CrossRefGoogle ScholarPubMed
45Tagoh, H. et al. (2004) Epigenetic silencing of the c-fms locus during B-lymphopoiesis occurs in discrete steps and is reversible. EMBO Journal 23, 4275-4285CrossRefGoogle ScholarPubMed
46Iwasaki, H. et al. (2006) The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes and Development 20, 3010-3021CrossRefGoogle ScholarPubMed
47Lancrin, C. et al. (2009) The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457, 892-895CrossRefGoogle ScholarPubMed
48Robb, L. et al. (1995) Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proceedings of the National Academy of Sciences of the United States of America 92, 7075-7079CrossRefGoogle ScholarPubMed
49Shivdasani, R.A., Mayer, E.L. and Orkin, S.H. (1995) Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373, 432-434CrossRefGoogle ScholarPubMed
50Warren, A.J. et al. (1994) The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 78, 45-57CrossRefGoogle ScholarPubMed
51Yamada, Y. et al. (1998) The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America 95, 3890-3895CrossRefGoogle Scholar
52Osada, H. et al. (1995) Association of erythroid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA1. Proceedings of the National Academy of Sciences of the United States of America 92, 9585-9589CrossRefGoogle ScholarPubMed
53Okuda, T. et al. (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321-330CrossRefGoogle ScholarPubMed
54Chen, M.J. et al. (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457, 887-891CrossRefGoogle Scholar
55North, T. et al. (1999) Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126, 2563-2575CrossRefGoogle ScholarPubMed
56North, T.E. et al. (2004) Runx1 is expressed in adult mouse hematopoietic stem cells and differentiating myeloid and lymphoid cells, but not in maturing erythroid cells. Stem Cells 22, 158-168CrossRefGoogle ScholarPubMed
57Pimanda, J.E. et al. (2007) Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proceedings of the National Academy of Sciences of the United States of America 104, 17692-17697CrossRefGoogle Scholar
58Swiers, G., Patient, R. and Loose, M. (2006) Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Developmental Biology 294, 525-540CrossRefGoogle ScholarPubMed
59Lacaud, G. et al. (2002) Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood 100, 458-466CrossRefGoogle ScholarPubMed
60Lacaud, G. et al. (2004) Haploinsufficiency of Runx1 results in the acceleration of mesodermal development and hemangioblast specification upon in vitro differentiation of ES cells. Blood 103, 886-889CrossRefGoogle ScholarPubMed
61Hoogenkamp, M. et al. (2009) Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program. Blood 114, 299-309CrossRefGoogle ScholarPubMed
62Okada, H. et al. (1998) AML1(−/−) embryos do not express certain hematopoiesis-related gene transcripts including those of the PU.1 gene. Oncogene 17, 2287-2293CrossRefGoogle Scholar
63Ichikawa, M. et al. (2004) AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nature Medicine 10, 299-304CrossRefGoogle Scholar
64Growney, J.D. et al. (2005) Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106, 494-504CrossRefGoogle ScholarPubMed
65Zhang, P. et al. (2004) Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha. Immunity 21, 853-863CrossRefGoogle ScholarPubMed
66Scott, E.W. et al. (1994) Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573-1577CrossRefGoogle ScholarPubMed
67McKercher, S.R. et al. (1996) Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO Journal 15, 5647-5658CrossRefGoogle ScholarPubMed
68Pevny, L. et al. (1995) Development of hematopoietic cells lacking transcription factor GATA-1. Development 121, 163-172CrossRefGoogle ScholarPubMed
69Pevny, L. et al. (1991) Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349, 257-260CrossRefGoogle ScholarPubMed
70Zhang, P. et al. (2000) PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood 96, 2641-2648CrossRefGoogle ScholarPubMed
71Rekhtman, N. et al. (2003) PU.1 and pRB interact and cooperate to repress GATA-1 and block erythroid differentiation. Molecular and Cellular Biology 23, 7460-7474CrossRefGoogle ScholarPubMed
72Nerlov, C. et al. (2000) GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood 95, 2543-2551CrossRefGoogle ScholarPubMed
73Krysinska, H. et al. (2007) A two-step, PU.1-dependent mechanism for developmentally regulated chromatin remodeling and transcription of the c-fms gene. Molecular and Cellular Biology 27, 878-887CrossRefGoogle ScholarPubMed
74Tagoh, H. et al. (2002) Transcription factor complex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells. Genes and Development 16, 1721-1737CrossRefGoogle ScholarPubMed
75Laslo, P. et al. (2006) Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126, 755-766CrossRefGoogle ScholarPubMed
76Mikkola, H.K. et al. (2003) Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature 421, 547-551CrossRefGoogle ScholarPubMed
77Alcalay, M. et al. (2001) Common themes in the pathogenesis of acute myeloid leukemia. Oncogene 20, 5680-5694CrossRefGoogle ScholarPubMed
78Shigesada, K., van de Sluis, B. and Liu, P.P. (2004) Mechanism of leukemogenesis by the inv(16) chimeric gene CBFB/PEBP2B-MHY11. Oncogene 23, 4297-4307CrossRefGoogle ScholarPubMed
79Guenther, M.G. et al. (2008) Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes and Development 22, 3403-3408CrossRefGoogle ScholarPubMed
80Daser, A. and Rabbitts, T.H. (2005) The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Seminars in Cancer Biology 15, 175-188CrossRefGoogle ScholarPubMed
81Knoepfler, P.S. et al. (2006) Myc influences global chromatin structure. EMBO Journal 25, 2723-2734CrossRefGoogle ScholarPubMed
82Battey, J. et al. (1983) The human c-myc oncogene: structural consequences of translocation into the IgH locus in Burkitt lymphoma. Cell 34, 779-787CrossRefGoogle ScholarPubMed
83Madisen, L. and Groudine, M. (1994) Identification of a locus control region in the immunoglobulin heavy-chain locus that deregulates c-myc expression in plasmacytoma and Burkitt's lymphoma cells. Genes and Development 8, 2212-2226CrossRefGoogle ScholarPubMed
84Goyama, S. and Kurokawa, M. (2009) Pathogenetic significance of ecotropic viral integration site-1 in hematological malignancies. Cancer Science 100, 990-995CrossRefGoogle ScholarPubMed
85Goyama, S. et al. (2008) Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 3, 207-220CrossRefGoogle ScholarPubMed
86Harewood, L. et al. (2003) Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia 17, 547-553CrossRefGoogle ScholarPubMed
87Perez-Vera, P. et al. (2008) Multiple copies of RUNX1: description of 14 new patients, follow-up, and a review of the literature. Cancer Genetics and Cytogenetics 180, 129-134CrossRefGoogle Scholar
88Ng, H.H. et al. (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Molecular Cell 11, 709-719CrossRefGoogle ScholarPubMed
89Dou, Y. et al. (2005) Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121, 873-885CrossRefGoogle ScholarPubMed
90Slany, R.K. (2009) The molecular biology of mixed lineage leukemia. Haematologica 94, 984-993CrossRefGoogle ScholarPubMed
91Bitoun, E., Oliver, P.L. and Davies, K.E. (2007) The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Human Molecular Genetics 16, 92-106CrossRefGoogle ScholarPubMed
92Krivtsov, A.V. et al. (2008) H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 14, 355-368CrossRefGoogle ScholarPubMed
93Osato, M. (2004) Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene 23, 4284-4296CrossRefGoogle ScholarPubMed
94Pabst, T. et al. (2001) Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nature Genetics 27, 263-270CrossRefGoogle ScholarPubMed
95Bereshchenko, O. et al. (2009) Hematopoietic stem cell expansion precedes the generation of committed myeloid leukemia-initiating cells in C/EBPalpha mutant AML. Cancer Cell 16, 390-400CrossRefGoogle Scholar
96Schwering, I. et al. (2003) Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 101, 1505-1512CrossRefGoogle ScholarPubMed
97Mathas, S. et al. (2006) Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nature Immunology 7, 207-215CrossRefGoogle ScholarPubMed
98Kuppers, R. (2009) The biology of Hodgkin's lymphoma. Nature Reviews Cancer 9, 15-27CrossRefGoogle ScholarPubMed
99Chekulaeva, M. and Filipowicz, W. (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Current Opinion in Cell Biology 21, 452-460CrossRefGoogle ScholarPubMed
100Chen, C.Z. et al. (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83-86CrossRefGoogle ScholarPubMed
101Zhou, B. et al. (2007) miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proceedings of the National Academy of Sciences of the United States of America 104, 7080-7085CrossRefGoogle Scholar
102Xiao, C. and Rajewsky, K. (2009) MicroRNA control in the immune system: basic principles. Cell 136, 26-36CrossRefGoogle ScholarPubMed
103Fazi, F. et al. (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123, 819-831CrossRefGoogle Scholar
104Fabbri, M., Croce, C.M. and Calin, G.A. (2009) MicroRNAs in the ontogeny of leukemias and lymphomas. Leukemia and Lymphoma 50, 160-170CrossRefGoogle ScholarPubMed
105Mi, S. et al. (2007) MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America 104, 19971-19976CrossRefGoogle ScholarPubMed
106Calin, G.A. et al. (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America 99, 15524-15529CrossRefGoogle ScholarPubMed
107Calin, G.A. et al. (2008) MiR-15a and miR-16–1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America 105, 5166-5171CrossRefGoogle ScholarPubMed
108Fazi, F. et al. (2007) Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12, 457-466CrossRefGoogle ScholarPubMed
109Li, E., Bestor, T.H. and Jaenisch, R. (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915-926CrossRefGoogle ScholarPubMed
110Gaudet, F. et al. (2003) Induction of tumors in mice by genomic hypomethylation. Science 300, 489-492CrossRefGoogle ScholarPubMed
111Easwaran, H.P. et al. (2004) Replication-independent chromatin loading of Dnmt1 during G2 and M phases. EMBO Reports 5, 1181-1186CrossRefGoogle ScholarPubMed
112Boultwood, J. and Wainscoat, J.S. (2007) Gene silencing by DNA methylation in haematological malignancies. British Journal of Haematology 138, 3-11CrossRefGoogle ScholarPubMed
113Baylin, S.B. and Ohm, J.E. (2006) Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nature Reviews Cancer 6, 107-116CrossRefGoogle Scholar
114Uchida, T. et al. (1997) Hypermethylation of the p15INK4B gene in myelodysplastic syndromes. Blood 90, 1403-1409CrossRefGoogle ScholarPubMed
115Galm, O. et al. (2004) DNA methylation changes in multiple myeloma. Leukemia 18, 1687-1692CrossRefGoogle ScholarPubMed
116Hess, C.J. et al. (2008) Concurrent methylation of promoters from tumor associated genes predicts outcome in acute myeloid leukemia. Leukemia and Lymphoma 49, 1132-1141CrossRefGoogle ScholarPubMed
117Garzon, R. et al. (2009) MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113, 6411-6418CrossRefGoogle ScholarPubMed
118Di Croce, L. et al. (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295, 1079-1082CrossRefGoogle ScholarPubMed
119Terranova, R. et al. (2006) Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proceedings of the National Academy of Sciences of the United States of America 103, 6629-6634CrossRefGoogle ScholarPubMed
120Glaser, S. et al. (2009) The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenetics & Chromatin 2, 5CrossRefGoogle ScholarPubMed
121Vire, E. et al. (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871-874CrossRefGoogle ScholarPubMed
122Mohammad, H.P. et al. (2009) Polycomb CBX7 promotes initiation of heritable repression of genes frequently silenced with cancer-specific DNA hypermethylation. Cancer Research 69, 6322-6330CrossRefGoogle ScholarPubMed
123Schlesinger, Y. et al. (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nature Genetics 39, 232-236CrossRefGoogle Scholar
124Straussman, R. et al. (2009) Developmental programming of CpG island methylation profiles in the human genome. Nature Structural and Molecular Biology 16, 564-571CrossRefGoogle ScholarPubMed
125Ooi, S.K. et al. (2007) DNMT3 L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714-717CrossRefGoogle Scholar
126Macleod, D. et al. (1994) Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes and Development 8, 2282-2292CrossRefGoogle ScholarPubMed
127Lin, I.G. and Hsieh, C.L. (2001) Chromosomal DNA demethylation specified by protein binding. EMBO Reports 2, 108-112CrossRefGoogle ScholarPubMed
128Rhoades, K.L. et al. (2000) Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood 96, 2108-2115CrossRefGoogle ScholarPubMed
129Higuchi, M. et al. (2002) Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 1, 63-74CrossRefGoogle Scholar
130Druker, B.J. (2008) Translation of the Philadelphia chromosome into therapy for CML. Blood 112, 4808-4817CrossRefGoogle ScholarPubMed
131Villa, R. et al. (2004) Epigenetic gene silencing in acute promyelocytic leukemia. Biochemical Pharmacology 68, 1247-1254CrossRefGoogle ScholarPubMed
132Villa, R. et al. (2007) Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 11, 513-525CrossRefGoogle ScholarPubMed
133Hughes, T.P. et al. (2003) Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. New England Journal of Medicine 349, 1423-1432CrossRefGoogle ScholarPubMed
134Dunne, J. et al. (2006) siRNA-mediated AML1/MTG8 depletion affects differentiation and proliferation-associated gene expression in t(8;21)-positive cell lines and primary AML blasts. Oncogene 25, 6067-6078CrossRefGoogle Scholar
135Heidenreich, O. et al. (2003) AML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8;21)-positive leukemic cells. Blood 101, 3157-3163CrossRefGoogle ScholarPubMed
136Wichmann, C. et al. (2007) Targeting the oligomerization domain of ETO interferes with RUNX1/ETO oncogenic activity in t(8;21)-positive leukemic cells. Cancer Research 67, 2280-2289CrossRefGoogle Scholar
137Racanicchi, S. et al. (2005) Targeting fusion protein/corepressor contact restores differentiation response in leukemia cells. EMBO Journal 24, 1232-1242CrossRefGoogle ScholarPubMed
138Schermelleh, L. et al. (2005) Trapped in action: direct visualization of DNA methyltransferase activity in living cells. Nature Methods 2, 751-756CrossRefGoogle ScholarPubMed
139Mund, C. et al. (2005) Characterization of DNA demethylation effects induced by 5-Aza-2′-deoxycytidine in patients with myelodysplastic syndrome. Cancer Research 65, 7086-7090CrossRefGoogle ScholarPubMed
140Soriano, A.O. et al. (2007) Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood 110, 2302-2308CrossRefGoogle ScholarPubMed
141Daskalakis, M. et al. (2002) Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 100, 2957-2964CrossRefGoogle ScholarPubMed
142Fandy, T.E. et al. (2009) Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies. Blood 114, 2764-2773CrossRefGoogle ScholarPubMed
143Li, L.H. et al. (1970) Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Research 30, 2760-2769Google ScholarPubMed
144Flotho, C. et al. (2009) The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia 23, 1019-1028CrossRefGoogle ScholarPubMed
145Silverman, L.R. et al. (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. Journal of Clinical Oncology 20, 2429-2440CrossRefGoogle ScholarPubMed
146Wijermans, P. et al. (2000) Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. Journal of Clinical Oncology 18, 956-962CrossRefGoogle ScholarPubMed
147Mesa, R.A. et al. (2009) 5-Azacitidine has limited therapeutic activity in myelofibrosis. Leukemia 23, 180-182CrossRefGoogle ScholarPubMed
148Quintas-Cardama, A. et al. (2008) A phase II study of 5-azacitidine for patients with primary and post-essential thrombocythemia/polycythemia vera myelofibrosis. Leukemia 22, 965-970CrossRefGoogle ScholarPubMed
149Fenaux, P. et al. (2009) Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncology 10, 223-232CrossRefGoogle ScholarPubMed
150Kantarjian, H. et al. (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106, 1794-1803CrossRefGoogle ScholarPubMed
151Wijermans, P. et al. (2008) Low dose decitabine versus best supportive care in elderly patients with intermediate or high risk MDS not eligible for intensive chemotherapy: final results of the randomised phase 2 study (06011) of the EORTC Leukemia and German MDS study groups. Blood 112, 226CrossRefGoogle Scholar
152Lubbert, M. et al. (2001) Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine. British Journal of Haematology 114, 349-357Google ScholarPubMed
153Kuendgen, A. et al. (2004) Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid. Blood 104, 1266-1269CrossRefGoogle ScholarPubMed
154Gore, S.D. et al. (2006) Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Research 66, 6361-6369CrossRefGoogle ScholarPubMed
155Laslo, P. et al. (2008) Gene regulatory networks directing myeloid and lymphoid cell fates within the immune system. Seminars in Immunology 20, 228-235CrossRefGoogle ScholarPubMed
Jones, P.A. and Baylin, S.B. (2007) The epigenomics of cancer. Cell 128, 683-692CrossRefGoogle ScholarPubMed
Santos-Rosa, H. and Caldas, C. (2005) Chromatin modifier enzymes, the histone code and cancer. European Journal of Cancer. 41, 2381-2402CrossRefGoogle ScholarPubMed
Rando, O.J. and Chang, H.Y. (2009) Genome-wide views of chromatin structure. Annual Review of Biochemistry 78, 245-271CrossRefGoogle ScholarPubMed
Neff, T. and Armstrong, S.A. (2009) Chromatin maps, histone modifications and leukemia. Leukemia 23, 1243-1251CrossRefGoogle ScholarPubMed
Wang, Z. et al. (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019-1031CrossRefGoogle ScholarPubMed
Jones, P.A. and Baylin, S.B. (2007) The epigenomics of cancer. Cell 128, 683-692CrossRefGoogle ScholarPubMed
Santos-Rosa, H. and Caldas, C. (2005) Chromatin modifier enzymes, the histone code and cancer. European Journal of Cancer. 41, 2381-2402CrossRefGoogle ScholarPubMed
Rando, O.J. and Chang, H.Y. (2009) Genome-wide views of chromatin structure. Annual Review of Biochemistry 78, 245-271CrossRefGoogle ScholarPubMed
Neff, T. and Armstrong, S.A. (2009) Chromatin maps, histone modifications and leukemia. Leukemia 23, 1243-1251CrossRefGoogle ScholarPubMed
Wang, Z. et al. (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019-1031CrossRefGoogle ScholarPubMed