Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T20:41:38.154Z Has data issue: false hasContentIssue false

Epigenetic control of cellular senescence in disease: opportunities for therapeutic intervention

Published online by Cambridge University Press:  13 March 2007

Stuart P. Atkinson
Affiliation:
Centre for Oncology and Applied Pharmacology, University of Glasgow, Cancer Research UK Beatson Laboratories, Bearsden, Glasgow, G61 1BD, UK.
W. Nicol Keith*
Affiliation:
Centre for Oncology and Applied Pharmacology, University of Glasgow, Cancer Research UK Beatson Laboratories, Bearsden, Glasgow, G61 1BD, UK.
*
*Corresponding author: W. Nicol Keith, Centre for Oncology and Applied Pharmacology, University of Glasgow, Cancer Research UK Beatson Laboratories, Alexander Stone Building, Garscube Estate, Switchback Rd, Bearsden, Glasgow, G61 1BD, UK. Tel: +44 (0)141 330 4811; Fax: +44 (0)141 330 4127; E-mail: [email protected]

Abstract

Understanding how senescence is established and maintained is an important area of study both for normal cell physiology and in tumourigenesis. Modifications to N-terminal tails of histone proteins, which can lead to chromatin remodelling, appear to be key to the regulation of the senescence phenotype. Epigenetic mechanisms such as modification of histone proteins have been shown to be sufficient to regulate gene expression levels and specific gene promoters can become epigenetically altered at senescence. This suggests that epigenetic mechanisms are important in senescence and further suggests epigenetic deregulation could play an important role in the bypass of senescence and the acquisition of a tumourigenic phenotype. Tumour suppressor proteins and cellular senescence are intimately linked and such proteins are now known to regulate gene expression through chromatin remodelling, again suggesting a link between chromatin modification and cellular senescence. Telomere dynamics and the expression of the telomerase genes are also both implicitly linked to senescence and tumourigenesis, and epigenetic deregulation of the telomerase gene promoters has been identified as a possible mechanism for the activation of telomere maintenance mechanisms in cancer. Recent studies have also suggested that epigenetic deregulation in stem cells could play an important role in carcinogenesis, and new models have been suggested for the attainment of tumourigenesis and bypass of senescence. Overall, proper regulation of the chromatin environment is suggested to have an important role in the senescence pathway, such that its deregulation could lead to tumourigenesis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Hayflick, L. (1965) The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res 37, 614-636CrossRefGoogle ScholarPubMed
2Campisi, J. (2001) Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 11, S27-31CrossRefGoogle ScholarPubMed
3Mathon, N.F. and Lloyd, A.C. (2001) Cell senescence and cancer. Nat Rev Cancer 1, 203-213CrossRefGoogle ScholarPubMed
4Shay, J.W. and Roninson, I.B. (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23, 2919-2933CrossRefGoogle ScholarPubMed
5Roninson, I.B. (2003) Tumor cell senescence in cancer treatment. Cancer Res 63, 2705-2715Google ScholarPubMed
6Shelton, D.N. et al. (1999) Microarray analysis of replicative senescence. Curr Biol 9, 939-945CrossRefGoogle ScholarPubMed
7Hardy, K. et al. (2005) Transcriptional networks and cellular senescence in human mammary fibroblasts. Mol Biol Cell 16, 943-953CrossRefGoogle ScholarPubMed
8Yoon, I.K. et al. (2004) Exploration of replicative senescence-associated genes in human dermal fibroblasts by cDNA microarray technology. Exp Gerontol 39, 1369-1378CrossRefGoogle ScholarPubMed
9Guo, S., Zhang, Z. and Tong, T. (2004) Cloning and characterization of cellular senescence-associated genes in human fibroblasts by suppression subtractive hybridization. Exp Cell Res 298, 465-472CrossRefGoogle ScholarPubMed
10Mason, D.X., Jackson, T.J. and Lin, A.W. (2004) Molecular signature of oncogenic ras-induced senescence. Oncogene 23, 9238-9246CrossRefGoogle ScholarPubMed
11Bandyopadhyay, D. and Medrano, E.E. (2003) The emerging role of epigenetics in cellular and organismal aging. Exp Gerontol 38, 1299-1307CrossRefGoogle ScholarPubMed
12Young, J. and Smith, J.R. (2000) Epigenetic aspects of cellular senescence. Exp Gerontol 35, 23-32CrossRefGoogle ScholarPubMed
13Esteller, M. (2006) Epigenetics provides a new generation of oncogenes and tumour-suppressor genes. Br J Cancer 94, 179-183CrossRefGoogle ScholarPubMed
14Santos-Rosa, H. and Caldas, C. (2005) Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer 41, 2381-2402CrossRefGoogle ScholarPubMed
15Baylin, S.B. and Ohm, J.E. (2006) Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6, 107-116CrossRefGoogle Scholar
16Jenuwein, T. and Allis, C.D. (2001) Translating the histone code. Science 293, 1074-1080CrossRefGoogle ScholarPubMed
17Strahl, B.D. and Allis, C.D. (2000) The language of covalent histone modifications. Nature 403, 41-45CrossRefGoogle ScholarPubMed
18Martin, C. and Zhang, Y. (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6, 838-849CrossRefGoogle ScholarPubMed
19Schubeler, D. et al. (2004) The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev 18, 1263-1271CrossRefGoogle ScholarPubMed
20Campisi, J. (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513-522CrossRefGoogle ScholarPubMed
21Krtolica, A. et al. (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98, 12072-12077CrossRefGoogle ScholarPubMed
22Campisi, J. et al. (2001) Cellular senescence, cancer and aging: the telomere connection. Exp Gerontol 36, 1619-1637CrossRefGoogle ScholarPubMed
23Campisi, J. (2000) Cancer, aging and cellular senescence. In Vivo 14, 183-188Google ScholarPubMed
24Jones, P.A. and Baylin, S.B. (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3, 415-428CrossRefGoogle ScholarPubMed
25Hake, S.B., Xiao, A. and Allis, C.D. (2004) Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br J Cancer 90, 761-769CrossRefGoogle ScholarPubMed
26Feinberg, A.P. (2004) The epigenetics of cancer etiology. Semin Cancer Biol 14, 427-432CrossRefGoogle ScholarPubMed
27Feinberg, A.P., Ohlsson, R. and Henikoff, S. (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7, 21-33CrossRefGoogle ScholarPubMed
28Macieira-Coelho, A. (1991) Chromatin reorganization during senescence of proliferating cells. Mutat Res 256, 81-104CrossRefGoogle ScholarPubMed
29Zhang, H., Pan, K.H. and Cohen, S.N. (2003) Senescence-specific gene expression fingerprints reveal cell-type-dependent physical clustering of up-regulated chromosomal loci. Proc Natl Acad Sci U S A 100, 3251-3256CrossRefGoogle ScholarPubMed
30Narita, M. et al. (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703-716CrossRefGoogle ScholarPubMed
31Luo, R.X., Postigo, A.A. and Dean, D.C. (1998) Rb interacts with histone deacetylase to repress transcription. Cell 92, 463-473CrossRefGoogle ScholarPubMed
32Magnaghi-Jaulin, L. et al. (1998) Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391, 601-605CrossRefGoogle ScholarPubMed
33Brehm, A. et al. (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597-601CrossRefGoogle ScholarPubMed
34Vandel, L. et al. (2001) Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol Cell Biol 21, 6484-6494CrossRefGoogle ScholarPubMed
35Nielsen, S.J. et al. (2001) Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561-565CrossRefGoogle ScholarPubMed
36Braig, M. et al. (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660-665CrossRefGoogle ScholarPubMed
37Peters, A.H. et al. (2001) Loss of the Suv39 h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323-337CrossRefGoogle Scholar
38Pogribny, I.P. et al. (2006) Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suv4–20h2 and Suv-39h1 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis 27, 1180-1186CrossRefGoogle ScholarPubMed
39Fraga, M.F. et al. (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37, 391-400CrossRefGoogle ScholarPubMed
40Michaloglou, C. et al. (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720-724CrossRefGoogle ScholarPubMed
41Collado, M. et al. (2005) Tumour biology: senescence in premalignant tumours. Nature 436, 642CrossRefGoogle ScholarPubMed
42Lazzerini Denchi, E. et al. (2005) Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. Mol Cell Biol 25, 2660-2672CrossRefGoogle ScholarPubMed
43Chan, H.M. et al. (2005) The p400 E1A-associated protein is a novel component of the p53 → p21 senescence pathway. Genes Dev 19, 196-201CrossRefGoogle ScholarPubMed
44Zhang, R. et al. (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8, 19-30CrossRefGoogle ScholarPubMed
45Narita, M. et al. (2006) A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126, 503-514CrossRefGoogle Scholar
46Liu, X.T. et al. (1994) Prohibitin expression during cellular senescence of human diploid fibroblasts. Biochem Biophys Res Commun 201, 409-414CrossRefGoogle ScholarPubMed
47Rastogi, S. et al. (2006) Prohibitin facilitates cellular senescence by recruiting specific corepressors to inhibit E2F target genes. Mol Cell Biol 26, 4161-4171CrossRefGoogle ScholarPubMed
48Herbig, U. et al. (2006) Cellular senescence in aging primates. Science 311, 1257CrossRefGoogle ScholarPubMed
49Allison, S.J. and Milner, J. (2004) Remodelling chromatin on a global scale: a novel protective function of p53. Carcinogenesis 25, 1551-1557CrossRefGoogle Scholar
50Espinosa, J.M. and Emerson, B.M. (2001) Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell 8, 57-69CrossRefGoogle ScholarPubMed
51Barlev, N.A. et al. (2001) Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell 8, 1243-1254CrossRefGoogle ScholarPubMed
52Lagger, G. et al. (2003) The tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the cyclin-dependent kinase inhibitor p21/WAF1/CIP1 gene. Mol Cell Biol 23, 2669-2679CrossRefGoogle ScholarPubMed
53An, W., Kim, J. and Roeder, R.G. (2004) Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117, 735-748CrossRefGoogle ScholarPubMed
54Murphy, M. et al. (1999) Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev 13, 2490-2501CrossRefGoogle ScholarPubMed
55Nguyen, T.T. et al. (2005) Transcription factor interactions and chromatin modifications associated with p53-mediated, developmental repression of the alpha-fetoprotein gene. Mol Cell Biol 25, 2147-2157CrossRefGoogle ScholarPubMed
56Cui, R. et al. (2005) Family members p53 and p73 act together in chromatin modification and direct repression of alpha-fetoprotein transcription. J Biol Chem 280, 39152-39160CrossRefGoogle ScholarPubMed
57Russell, M. et al. (2006) Grow-ING, Age-ING and Die-ING: ING proteins link cancer, senescence and apoptosis. Exp Cell Res 312, 951-961CrossRefGoogle ScholarPubMed
58Feng, X., Hara, Y. and Riabowol, K. (2002) Different HATS of the ING1 gene family. Trends Cell Biol 12, 532-538CrossRefGoogle ScholarPubMed
59Vieyra, D. et al. (2002) Human ING1 proteins differentially regulate histone acetylation. J Biol Chem 277, 29832-29839CrossRefGoogle ScholarPubMed
60Vieyra, D. et al. (2002) ING1 isoforms differentially affect apoptosis in a cell age-dependent manner. Cancer Res 62, 4445-4452Google Scholar
61Shi, X. et al. (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442, 96-99CrossRefGoogle ScholarPubMed
62Yamane, K. et al. (2006) JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125, 483-495CrossRefGoogle ScholarPubMed
63Whetstine, J.R. et al. (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467-481CrossRefGoogle ScholarPubMed
64Klose, R.J. et al. (2006) The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442, 312-316CrossRefGoogle ScholarPubMed
65Cloos, P.A. et al. (2006) The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442, 307-311CrossRefGoogle ScholarPubMed
66Metzger, E. et al. (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436-439CrossRefGoogle ScholarPubMed
67Jacobs, J.J. et al. (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164-168CrossRefGoogle ScholarPubMed
68Itahana, K. et al. (2003) Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol 23, 389-401CrossRefGoogle ScholarPubMed
69Bea, S. et al. (2001) BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res 61, 2409-2412Google ScholarPubMed
70Vonlanthen, S. et al. (2001) The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br J Cancer 84, 1372-1376CrossRefGoogle ScholarPubMed
71Nowak, K. et al. (2006) BMI1 is a target gene of E2F-1 and is strongly expressed in primary neuroblastomas. Nucleic Acids Res 34, 1745-1754CrossRefGoogle ScholarPubMed
72Sawa, M. et al. (2005) BMI-1 is highly expressed in M0-subtype acute myeloid leukemia. Int J Hematol 82, 42-47CrossRefGoogle ScholarPubMed
73Liu, L., Andrews, L.G. and Tollefsbol, T.O. (2006) Loss of the human polycomb group protein BMI1 promotes cancer-specific cell death. Oncogene 25, 4370-4375CrossRefGoogle ScholarPubMed
74Leung, C. et al. (2004) Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428, 337-341CrossRefGoogle ScholarPubMed
75Dimri, G.P. et al. (2002) The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 62, 4736-4745Google ScholarPubMed
76Cao, R. and Zhang, Y. (2004) The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 14, 155-164CrossRefGoogle ScholarPubMed
77Varambally, S. et al. (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624-629CrossRefGoogle ScholarPubMed
78Kleer, C.G. et al. (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A 100, 11606-11611CrossRefGoogle ScholarPubMed
79Bracken, A.P. et al. (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. Embo J 22, 5323-5335CrossRefGoogle ScholarPubMed
80Tang, X. et al. (2004) Activated p53 suppresses the histone methyltransferase EZH2 gene. Oncogene 23, 5759-5769CrossRefGoogle ScholarPubMed
81Villeponteau, B. (1997) The heterochromatin loss model of aging. Exp Gerontol 32, 383-394CrossRefGoogle ScholarPubMed
82Meshorer, E. et al. (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10, 105-116CrossRefGoogle ScholarPubMed
83Meshorer, E. and Misteli, T. (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7, 540-546CrossRefGoogle ScholarPubMed
84Szutorisz, H. and Dillon, N. (2005) The epigenetic basis for embryonic stem cell pluripotency. Bioessays 27, 1286-1293CrossRefGoogle ScholarPubMed
85Boyer, L.A. et al. (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349-353CrossRefGoogle ScholarPubMed
86Bernstein, B.E. et al. (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315-326CrossRefGoogle ScholarPubMed
87Azuara, V. et al. (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8, 532-538CrossRefGoogle ScholarPubMed
88Lee, T.I. et al. (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301-313CrossRefGoogle ScholarPubMed
89Berezovska, O.P. et al. (2006) Essential role for activation of the polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle 5, 1886-1901Google ScholarPubMed
90Glinsky, G.V., Berezovska, O. and Glinskii, A.B. (2005) Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 115, 1503-1521CrossRefGoogle ScholarPubMed
91Krivtsov, A.V. et al. (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818-822CrossRefGoogle ScholarPubMed
92Daser, A. and Rabbitts, T.H. (2005) The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin Cancer Biol 15, 175-188CrossRefGoogle ScholarPubMed
93Anonymous (2006) European Journal of Cancer Special Issue on Cancer Stem Cells: Opportunities for Novel Diagnostics and Drug Discovery. 42, 1298-1308Google Scholar
94Bandyopadhyay, D. et al. (2002) Down-regulation of p300/CBP histone acetyltransferase activates a senescence checkpoint in human melanocytes. Cancer Res 62, 6231-6239Google ScholarPubMed
95Yao, T.P. et al. (1998) Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361-372CrossRefGoogle ScholarPubMed
96Ogryzko, V.V. et al. (1996) Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Mol Cell Biol 16, 5210-5218CrossRefGoogle Scholar
97Munro, J. et al. (2004) Histone deacetylase inhibitors induce a senescence-like state in human cells by a p16-dependent mechanism that is independent of a mitotic clock. Exp Cell Res 295, 525-538CrossRefGoogle Scholar
98Place, R.F., Noonan, E.J. and Giardina, C. (2005) HDACs and the senescent phenotype of WI-38 cells. BMC Cell Biol 6, 37CrossRefGoogle ScholarPubMed
99Kaeberlein, M., McVey, M. and Guarente, L. (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13, 2570-2580CrossRefGoogle ScholarPubMed
100Imai, S. et al. (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795-800CrossRefGoogle ScholarPubMed
101Hekimi, S. and Guarente, L. (2003) Genetics and the specificity of the aging process. Science 299, 1351-1354CrossRefGoogle ScholarPubMed
102Rogina, B. and Helfand, S.L. (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101, 15998-16003CrossRefGoogle ScholarPubMed
103Cohen, H.Y. et al. (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390-392CrossRefGoogle ScholarPubMed
104Furuyama, T. et al. (2004) SIR2 is required for polycomb silencing and is associated with an E(Z) histone methyltransferase complex. Curr Biol 14, 1812-1821CrossRefGoogle Scholar
105Yeung, F. et al. (2004) Modulation of NF- kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. Embo J 23, 2369-2380CrossRefGoogle ScholarPubMed
106Brunet, A. et al. (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011-2015CrossRefGoogle ScholarPubMed
107Vaziri, H. et al. (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149-159CrossRefGoogle ScholarPubMed
108Bradbury, C.A. et al. (2005) Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 19, 1751-1759CrossRefGoogle ScholarPubMed
109Michishita, E. et al. (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16, 4623-4635CrossRefGoogle ScholarPubMed
110Ota, H. et al. (2005) Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 25, 176-185CrossRefGoogle Scholar
111Stancheva, I. (2005) Caught in conspiracy: cooperation between DNA methylation and histone H3K9 methylation in the establishment and maintenance of heterochromatin. Biochem Cell Biol 83, 385-395CrossRefGoogle ScholarPubMed
112Lachner, M. and Jenuwein, T. (2002) The many faces of histone lysine methylation. Curr Opin Cell Biol 14, 286-298CrossRefGoogle ScholarPubMed
113Vire, E. et al. (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871-874CrossRefGoogle ScholarPubMed
114Esteve, P.O. et al. (2006) Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev 20, 3089-3103CrossRefGoogle ScholarPubMed
115Wilson, V.L. and Jones, P.A. (1983) DNA methylation decreases in aging but not in immortal cells. Science 220, 1055-1057CrossRefGoogle ScholarPubMed
116Hoal-van Helden, E.G. and van Helden, P.D. (1989) Age-related methylation changes in DNA may reflect the proliferative potential of organs. Mutat Res 219, 263-266CrossRefGoogle ScholarPubMed
117Holliday, R. (1986) Strong effects of 5-azacytidine on the in vitro lifespan of human diploid fibroblasts. Exp Cell Res 166, 543-552CrossRefGoogle ScholarPubMed
118Fairweather, D.S., Fox, M. and Margison, G.P. (1987) The in vitro lifespan of MRC-5 cells is shortened by 5-azacytidine-induced demethylation. Exp Cell Res 168, 153-159CrossRefGoogle ScholarPubMed
119Belinsky, S.A. et al. (1996) Increased cytosine DNA-methyltransferase activity is target-cell-specific and an early event in lung cancer. Proc Natl Acad Sci U S A 93, 4045-4050CrossRefGoogle Scholar
120Slack, A. et al. (1999) DNA methyltransferase is a downstream effector of cellular transformation triggered by simian virus 40 large T antigen. J Biol Chem 274, 10105-10112CrossRefGoogle ScholarPubMed
121Rouleau, J., MacLeod, A.R. and Szyf, M. (1995) Regulation of the DNA methyltransferase by the Ras-AP-1 signaling pathway. J Biol Chem 270, 1595-1601CrossRefGoogle ScholarPubMed
122Issa, J.P. et al. (1994) Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet 7, 536-540CrossRefGoogle ScholarPubMed
123Young, J.I. and Smith, J.R. (2001) DNA methyltransferase inhibition in normal human fibroblasts induces a p21-dependent cell cycle withdrawal. J Biol Chem 276, 19610-19616CrossRefGoogle ScholarPubMed
124Feinberg, A.P. and Vogelstein, B. (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89-92CrossRefGoogle ScholarPubMed
125Goelz, S.E. et al. (1985) Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228, 187-190CrossRefGoogle ScholarPubMed
126Eden, A. et al. (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300, 455CrossRefGoogle ScholarPubMed
127Gaudet, F. et al. (2003) Induction of tumors in mice by genomic hypomethylation. Science 300, 489-492CrossRefGoogle ScholarPubMed
128Sakai, T. et al. (1991) Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet 48, 880-888Google ScholarPubMed
129Gonzalez-Zulueta, M. et al. (1995) Methylation of the 5 CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res 55, 4531-4535Google ScholarPubMed
130Reynolds, P.A. et al. (2006) Tumor suppressor p16INK4A regulates polycomb-mediated DNA hypermethylation in human mammary epithelial cells. J Biol Chem 281, 24790-24802CrossRefGoogle ScholarPubMed
131Herskind, C. and Rodemann, H.P. (2000) Spontaneous and radiation-induced differentiation of fibroblasts. Exp Gerontol 35, 747-755CrossRefGoogle ScholarPubMed
132Robles, S.J. and Adami, G.R. (1998) Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16, 1113-1123CrossRefGoogle ScholarPubMed
133von Zglinicki, T. et al. (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 220, 186-193CrossRefGoogle Scholar
134Shroff, R. et al. (2004) Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr Biol 14, 1703-1711CrossRefGoogle ScholarPubMed
135Karlseder, J., Smogorzewska, A. and de Lange, T. (2002) Senescence induced by altered telomere state, not telomere loss. Science 295, 2446-2449CrossRefGoogle Scholar
136d'Adda di Fagagna, F. et al. (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194-198CrossRefGoogle ScholarPubMed
137van Attikum, H. and Gasser, S.M. (2005) The histone code at DNA breaks: a guide to repair? Nat Rev Mol Cell Biol 6, 757-765CrossRefGoogle ScholarPubMed
138Huyen, Y. et al. (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406-411CrossRefGoogle ScholarPubMed
139Sanders, S.L. et al. (2004) Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119, 603-614CrossRefGoogle ScholarPubMed
140Botuyan, M.V. et al. (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361-1373CrossRefGoogle ScholarPubMed
141Shay, J.W. and Bacchetti, S. (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33, 787-791CrossRefGoogle ScholarPubMed
142Harley, C.B., Futcher, A.B. and Greider, C.W. (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345, 458-460CrossRefGoogle ScholarPubMed
143Hastie, N.D. et al. (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866-868CrossRefGoogle ScholarPubMed
144Allsopp, R.C. et al. (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A 89, 10114-10118CrossRefGoogle ScholarPubMed
145Kim, N.W. et al. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011-2015CrossRefGoogle ScholarPubMed
146Reddel, R.R. (2003) Alternative lengthening of telomeres, telomerase, and cancer. Cancer Lett 194, 155-162CrossRefGoogle ScholarPubMed
147Dunham, M.A. et al. (2000) Telomere maintenance by recombination in human cells. Nat Genet 26, 447-450CrossRefGoogle ScholarPubMed
148Bryan, T.M. and Reddel, R.R. (1997) Telomere dynamics and telomerase activity in in vitro immortalised human cells. Eur J Cancer 33, 767-773CrossRefGoogle ScholarPubMed
149Yeager, T.R. et al. (1999) Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 59, 4175-4179Google ScholarPubMed
150Henson, J.D. et al. (2005) A robust assay for alternative lengthening of telomeres in tumors shows the significance of alternative lengthening of telomeres in sarcomas and astrocytomas. Clin Cancer Res 11, 217-225CrossRefGoogle ScholarPubMed
151Ulaner, G.A. et al. (2003) Absence of a telomere maintenance mechanism as a favorable prognostic factor in patients with osteosarcoma. Cancer Res 63, 1759-1763Google ScholarPubMed
152Hakin-Smith, V. et al. (2003) Alternative lengthening of telomeres and survival in patients with glioblastoma multiforme. Lancet 361, 836-838CrossRefGoogle ScholarPubMed
153Johnson, J.E. et al. (2005) Multiple mechanisms of telomere maintenance exist in liposarcomas. Clin Cancer Res 11, 5347-5355CrossRefGoogle ScholarPubMed
154Atkinson, S.P. et al. (2005) Lack of telomerase gene expression in alternative lengthening of telomere cells is associated with chromatin remodeling of the hTR and hTERT gene promoters. Cancer Res 65, 7585-7590CrossRefGoogle ScholarPubMed
155Serakinci, N. et al. (2006) Telomerase promoter reprogramming and interaction with general transcription factors in the human mesenchymal stem cell. Regenerative Medicine 1, 125-131CrossRefGoogle ScholarPubMed
156Serakinci, N. et al. (2004) Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene 23, 5095-5098CrossRefGoogle ScholarPubMed
157Blasco, M.A. (2004) Carcinogenesis Young Investigator Award. Telomere epigenetics: a higher-order control of telomere length in mammalian cells. Carcinogenesis 25, 1083-1087CrossRefGoogle ScholarPubMed
158Garcia-Cao, M. et al. (2004) Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 36, 94-99CrossRefGoogle ScholarPubMed
159Gonzalo, S. et al. (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8, 416-424CrossRefGoogle ScholarPubMed
160Papworth, M., Kolasinska, P. and Minczuk, M. (2006) Designer zinc-finger proteins and their applications. Gene 366, 27-38CrossRefGoogle ScholarPubMed
161Won, J. et al. (2006) Small molecule-based reversible reprogramming of cellular lifespan. Nat Chem Biol 2, 369-374CrossRefGoogle ScholarPubMed
162Galmozzi, E., Facchetti, F. and La Porta, C.A. (2006) Cancer stem cells and therapeutic perspectives. Curr Med Chem 13, 603-607CrossRefGoogle ScholarPubMed
163Fuchs, E., Tumbar, T. and Guasch, G. (2004) Socializing with the neighbors: stem cells and their niche. Cell 116, 769-778CrossRefGoogle ScholarPubMed
164Zheng, X. et al. (2004) Gamma-catenin contributes to leukemogenesis induced by AML-associated translocation products by increasing the self-renewal of very primitive progenitor cells. Blood 103, 3535-3543CrossRefGoogle ScholarPubMed
165Massard, C., Deutsch, E. and Soria, J.C. (2006) Tumour stem cell-targeted treatment: elimination or differentiation. Ann Oncol 17, 1620-1624CrossRefGoogle ScholarPubMed
166Shi, S. et al. (2006) JAK signaling globally counteracts heterochromatic gene silencing. Nat Genet 38, 1071-1076CrossRefGoogle ScholarPubMed
167Seligson, D.B. et al. (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435, 1262-1266CrossRefGoogle ScholarPubMed
168Collado, M. and Serrano, M. (2006) The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 6, 472-476CrossRefGoogle ScholarPubMed
169Fraga, M.F. and Esteller, M. (2005) Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle 4, 1377-1381CrossRefGoogle ScholarPubMed
170Esteller, M. (2006) The necessity of a human epigenome project. Carcinogenesis 27, 1121-1125CrossRefGoogle ScholarPubMed
171Jones, P.A. and Martienssen, R. (2005) A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop. Cancer Res 65, 11241-11246CrossRefGoogle Scholar
172Matthews, C. et al. (2006) Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res 99, 156-164CrossRefGoogle ScholarPubMed
173Henderson, E.A. (2006) The potential effect of fibroblast senescence on wound healing and the chronic wound environment. J Wound Care 15, 315-318CrossRefGoogle ScholarPubMed
174Streit, W.J. (2006) Microglial senescence: does the brain's immune system have an expiration date? Trends Neurosci 29, 506-510CrossRefGoogle ScholarPubMed
175Shimada, A. et al. (2002) Age-related progressive neuronal DNA damage associated with cerebral degeneration in a mouse model of accelerated senescence. J Gerontol A Biol Sci Med Sci 57, B415421CrossRefGoogle Scholar
176Flanary, B. (2005) The role of microglial cellular senescence in the aging and Alzheimer diseased brain. Rejuvenation Res 8, 82-85CrossRefGoogle ScholarPubMed
177Nyunoya, T. et al. (2006) Cigarette smoke induces cellular senescence. Am J Respir Cell Mol Biol 35, 681-688CrossRefGoogle ScholarPubMed
178Muller, K.C. et al. (2006) Lung fibroblasts from patients with emphysema show markers of senescence in vitro. Respir Res 7, 32CrossRefGoogle ScholarPubMed
179Jimenez, R. et al. (2005) Replicative senescence in patients with chronic kidney failure. Kidney Int Suppl S1115CrossRefGoogle ScholarPubMed
180Erusalimsky, J.D. and Kurz, D.J. (2005) Cellular senescence in vivo: its relevance in ageing and cardiovascular disease. Exp Gerontol 40, 634-642CrossRefGoogle ScholarPubMed
181van Baarle, D. et al. (2005) Significance of senescence for virus-specific memory T cell responses: rapid ageing during chronic stimulation of the immune system. Immunol Lett 97, 19-29CrossRefGoogle ScholarPubMed
182Vallejo, A.N., Weyand, C.M. and Goronzy, J.J. (2004) T-cell senescence: a culprit of immune abnormalities in chronic inflammation and persistent infection. Trends Mol Med 10, 119-124CrossRefGoogle ScholarPubMed
183Joosten, S.A. et al. (2003) Telomere shortening and cellular senescence in a model of chronic renal allograft rejection. Am J Pathol 162, 1305-1312CrossRefGoogle Scholar
184Martin, J.A. and Buckwalter, J.A. (2002) Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology 3, 257-264CrossRefGoogle ScholarPubMed
185Wiemann, S.U. et al. (2002) Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. Faseb J 16, 935-942CrossRefGoogle ScholarPubMed
186Lu, Q. et al. (2006) Epigenetics, disease, and therapeutic interventions. Ageing Res RevCrossRefGoogle ScholarPubMed
187Moretti, P. and Zoghbi, H.Y. (2006) MeCP2 dysfunction in Rett syndrome and related disorders. Curr Opin Genet Dev 16, 276-281CrossRefGoogle ScholarPubMed
188Ballestar, E., Esteller, M. and Richardson, B.C. (2006) The epigenetic face of systemic lupus erythematosus. J Immunol 176, 7143-7147CrossRefGoogle ScholarPubMed
189McKinsey, T.A. and Olson, E.N. (2005) Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest 115, 538-546CrossRefGoogle ScholarPubMed
190Sadri-Vakili, G. and Cha, J.H. (2006) Mechanisms of disease: Histone modifications in Huntington's disease. Nat Clin Pract Neurol 2, 330-338CrossRefGoogle ScholarPubMed
191Beglopoulos, V. and Shen, J. (2006) Regulation of CRE-dependent transcription by presenilins: prospects for therapy of Alzheimer's disease. Trends Pharmacol Sci 27, 33-40CrossRefGoogle ScholarPubMed
192Langley, B. et al. (2005) Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr Drug Targets CNS Neurol Disord 4, 41-50CrossRefGoogle ScholarPubMed
193Taniura, H., Sng, J.C. and Yoneda, Y. (2006) Histone modifications in status epilepticus induced by kainate. Histol Histopathol 21, 785-791Google ScholarPubMed
194Adcock, I.M. and Lee, K.Y. (2006) Abnormal histone acetylase and deacetylase expression and function in lung inflammation. Inflamm Res 55, 311-321CrossRefGoogle ScholarPubMed
195Hirtz, D. et al. (2005) Challenges and opportunities in clinical trials for spinal muscular atrophy. Neurology 65, 1352-1357CrossRefGoogle ScholarPubMed
196Bredy, T.W. (2007) Behavioural epigenetics and psychiatric disorders. Med Hypotheses 68, 453CrossRefGoogle ScholarPubMed
197Herman, J.G. and Baylin, S.B. (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349, 2042-2054CrossRefGoogle ScholarPubMed

Further reading, resources and contacts

The Cancer Research UK Laboratories in Glasgow, UK, houses nearly 20 research groups working towards understanding cancer growth and its treatment: