Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T03:55:02.308Z Has data issue: false hasContentIssue false

WATER QUALITY IN AN INTEGRATED CULTURE OF WHITE SHRIMP (Litopenaeus vannamei)-TOMATO (Lycopersicon esculentum) USING LOW SALINITY GROUNDWATER IN SONORA, MEXICO

Published online by Cambridge University Press:  16 December 2013

M. MARTIN MARISCAL-LAGARDA
Affiliation:
Universidad Estatal de Sonora, Calle Independencia y 5 de Mayo, Benito Juárez, Sonora, México
FEDERICO PÁEZ-OSUNA*
Affiliation:
Instituto de Ciencias del Mar y Limnología, UNAM, Joel Montes Camarena s/n, Mazatlán, Sinaloa 82040, México
JOSÉ LUIS ESQUER-MÉNDEZ
Affiliation:
Universidad Estatal de Sonora, Calle Independencia y 5 de Mayo, Benito Juárez, Sonora, México
ILDELFONSO GUERRERO-MONROY
Affiliation:
Universidad Estatal de Sonora, Calle Independencia y 5 de Mayo, Benito Juárez, Sonora, México
ALONSO-ROMO DEL VIVAR
Affiliation:
Universidad Estatal de Sonora, Calle Independencia y 5 de Mayo, Benito Juárez, Sonora, México
KAREN Y. BRITO-SOLANO
Affiliation:
Posgrado en Ciencias del Mar y Limnología, UNAM, Joel Montes s/n, Mazatlán, Sinaloa 82040, México
DIANA N. LÓPEZ-PÉREZ
Affiliation:
Posgrado en Ciencias del Mar y Limnología, UNAM, Joel Montes s/n, Mazatlán, Sinaloa 82040, México
ROSALBA ALONSO-RODRÍGUEZ
Affiliation:
Instituto de Ciencias del Mar y Limnología, UNAM, Joel Montes Camarena s/n, Mazatlán, Sinaloa 82040, México
*
§Corresponding author. Email: [email protected]; Contact address: Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, UNAM. Joel Montes Camarena s/n, Mazatlán, Sinaloa 82040, México

Summary

The aim of this work was to test the performance of a shrimp-tomato culture system (STCS) in an arid-semiarid region (Sonora, Mexico) and to evaluate the water quality variables and phytoplankton variation of shrimp effluent and that water returning from the tomato module culture. The field study was conducted using groundwater and consisted of three circular tanks that were used for shrimp (Litopenaeus vannamei) farming and were coupled to one culture module of tomato plants (Lycopersicon esculentum). The shrimp effluent was used to irrigate the tomato plants. The yield was 11.1±0.2 kg shrimp per tank (3.9±2.0 ton ha−1) and 33.3 kg tomatoes per 45 plants (36.1±2.3 ton ha−1). During the culture, the concentrations of nutrients were (mg L−1): total N-ammonia, <0.001–0.848; N-nitrite, <0.001–1.45; N-nitrate, 5.2–172.2; dissolved reactive-P, <0.005–0.343. A total of 35 taxa belonging to three different algal classes were observed: Chlorophyta (87 to 98%), Bacilliariophyta (2 to 9%) and Cyanophyta (0–3%). This STCS allowed us to harvest the equivalent of 3.9 ton ha−1 of shrimp and 36.3 ton ha−1 of tomatoes, with a water consumption of 2.1 m3 per kg harvested of both products.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ali, M. H. and Talukder, M. S. U. (2008). Increasing water productivity in crop production- A synthesis. Agricultural Water Management 95:12011213.Google Scholar
American Public Health Association (APHA) (1989). Standard Methods for the Examination of Water and Wastewater. Baltimore, USA: Port City Press.Google Scholar
Boyd, C. E. (1989). Water Quality Management and Aeration in Shrimp Farming. Fisheries and Allied Aquaculture Department Series, No. 2. Auburn, AL, USA: Auburn University.Google Scholar
Boyd, C. E. (2005). Water use in aquaculture. World Aquaculture 36 (3):1215.Google Scholar
Boyd, C. E. and Gautier, D. (2000). Effluent composition and water quality standards. Global Aquaculture Advocate 10:6166.Google Scholar
Boyd, C. E. and Thunjai, T. (2003). Concentrations of major ions in waters of inland shrimp farms in China, Ecuador, Thailand, and the United States. Journal of the World Aquaculture Society 34:524532.CrossRefGoogle Scholar
Brito-Solano, K. Y. (2010). Calidad del agua y balance de nutrientes en un sistema de cultivo acoplado de camarón (Litopenaeus vannamei) y tomate (Lycopersicum esculentum) con agua de pozo y recambio cero. Master Degree Thesis. Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 91 p. (In Spanish).Google Scholar
Casillas-Hernández, R., Nolasco-Soria, H., Garcia-Galano, T., Carrillo-Farnes, O. and Páez-Osuna, F. (2007). Water quality, chemical fluxes and production in semi-intensive white shrimp (Litopenaeus vannamei) ponds utilizing two different feeding strategies. Aquacultural Engineering 36:105114.Google Scholar
Cronberg, G. and Annadotter, H. (2006). Manual on Aquatic Cyanobacteria. A Photo Guide and Synopsis of their Toxicology. Copenhagen: ISSHA.Google Scholar
Grasshoff, K., Ehrhardt, M. and Krembling, K. (1990). Methods of Seawater Analysis. Weinheim: Verlag Chemie.Google Scholar
Hopkins, J. S. and Villalón, J. (1992). Synopsis of industrial panel input on shrimp pond management. In Proceedings of the Special Session on Shrimp Farming, 138143 (Ed. Wiban, J. A.). Baton Rouge, Louisiana: World Aquaculture Society.Google Scholar
Ju, Z. Y., Forster, I. P. and Dominy, W. G. (2009). Effects of supplementing two species of marine algae or their fractions to a formulated diet on growth, survival and composition of shrimp (Litopenaeus vannamei). Aquaculture 292:237243.CrossRefGoogle Scholar
Lyle-Fritch, M. L., Romero-Beltrán, E. and Páez-Osuna, F. (2006). A survey on use of chemical and biological products in shrimp farming from Sinaloa (NW Mexico). Aquacultural Engineering 35:135146.Google Scholar
Magán, J., Gallardo, M., Thompson, R. and Lorenzo, P. (2008). Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions. Agricultural Water Management 95:10411055.Google Scholar
McGraw, W. J. and Scarpa, J. (2003). Minimum environmental potassium for survival of Pacific white shrimp Litopenaeus vannamei (Boone) in freshwater. Journal of Shellfish Research 22:263267.Google Scholar
McIntosh, D. and Fitzsimmons, K. (2003). Characterization of effluent from an inland, low salinity shrimp farm: what contribution could this water make if used for irrigation. Aquacultural Engineering 27:147156.CrossRefGoogle Scholar
Miranda, F. R., Lima, R. N., Crisóstomo, L. A. and Santana, M. G. S. (2008). Reuse of inland low-salinity shrimp farm effluent for melon irrigation. Aquacultural Engineering 39:15.Google Scholar
Páez-Osuna, F. (2001). Camaronicultura y Medio Ambiente. México: UNAM y El Colegio de Sinaloa. (In Spanish).Google Scholar
Roy, L. A., Davis, D. A., Saoud, I. P., Boyd, C. A., Pine, H. J. and Boyd, C. E. (2010). Shrimp culture in inland low salinity waters. Reviews of Aquaculture 2:191208.Google Scholar
Samperio-Ruiz, G. (2005). Hidroponia Comercial. México, D.F.: Editorial Diana, 172 pp. (In Spanish).Google Scholar
Stevenson, K. T., Fitzsimmons, K. M., Clay, P. A., Alessa, L. and Kliskey, A. (2010). Integration of aquaculture and arid lands agriculture for water reuse and reduced fertilizer dependency. Experimental Agriculture 46:173190.Google Scholar
Valiela, I. (1995). Marine Ecological Processes. New York: Springer.Google Scholar