Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T21:50:32.175Z Has data issue: false hasContentIssue false

Vesicular-Arbuscular Mycorrhiza and Phosphorus Uptake of Chickpea Grown in Northern Syria

Published online by Cambridge University Press:  03 October 2008

Edwin Weber
Affiliation:
Institute of Plant Nutrition, Hohenheim University, Box 70 05 62, D-7000 Stuttgart 70, Germany and Agricultural Research in the Dry Areas (ICARDA), PO Box 5466, Aleppo, Syria
Eckhard George
Affiliation:
Institute of Plant Nutrition, Hohenheim University, Box 70 05 62, D-7000 Stuttgart 70, Germany and Agricultural Research in the Dry Areas (ICARDA), PO Box 5466, Aleppo, Syria
Douglas P. Beck
Affiliation:
Legumes Program, International Center for Agricultural Research in the Dry Areas (ICARDA), PO Box 5466, Aleppo, Syria
Mohan C. Saxena
Affiliation:
Legumes Program, International Center for Agricultural Research in the Dry Areas (ICARDA), PO Box 5466, Aleppo, Syria
Horst Marschner
Affiliation:
Institute of Plant Nutrition, Hohenheim University, Box 70 05 62, D-7000 Stuttgart 70, Germany and Agricultural Research in the Dry Areas (ICARDA), PO Box 5466, Aleppo, Syria

Summary

Inoculation with vesicular-arbuscular mycorrhizal fungi (VAMF) improved growth of chick-pea (Cicer arielinum L.) and doubled phosphorus (P) uptake at low and intermediate levels of P fertilization in a pot experiment on sterilized low-P calcareous soil. In field experiments at Tel Hadya, northern Syria, growth, shoot P concentration and seed yield of spring-sown chickpea remained unaffected by inoculation with VAMF or by P fertilization. The mycorrhizal infection of chickpea was high (approximately 75% of root length mycorrhizal at the flowering stage) irrespective of inoculation with VAMF or P fertilization and may ensure efficient P uptake under field conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beck, D. P., Wery, J., Saxena, M. C. & Ayada A. (1991). Dinitrogen fixation and nitrogen balance in cool-season food legumes. Agronomy journal 83:334341.CrossRefGoogle Scholar
Bolan, N. S., Robson, A. D. & Barrow, N. J. (1983). Plant and soil factors including mycorrhizal infection causing sigmoidal response of plants to applied phosphorus. Plant and Soil 73:187201.CrossRefGoogle Scholar
Cooper, P. J. M., Gregory, P. J., Tully, D. & Harris, H. C. (1987). Improving water use efficiency of annual crops in the rainfed farming systems of West Asia and North Africa. Experimental Agriculture 23:113158.CrossRefGoogle Scholar
Dinkelaker, B. (1990). Genotypische Unterschiede in der Phosphateffizienz von Kichererbse (Cicer arietinum L.). PhD thesis, Hohenheim University, Germany.Google Scholar
Ehrman, T. & Cocks, P. S. (1990). Ecogeography of annual legumes in Syria: distribution patterns. Journal of Applied Ecology 27:578591.CrossRefGoogle Scholar
Fitter, A. H. (1985). Functioning of vesicular-arbuscular mycorrhizas under field conditions. New Phylologist 99:257265.CrossRefGoogle Scholar
George, E., Weber, E. & Saxena, M. C. (1988). VA mycorrhiza studies. In Food Legume Improvement Program. Annual Report for 1987, 159162. Aleppo, Syria: ICARDA.Google Scholar
Gerdemann, J. W. & Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46:235244.CrossRefGoogle Scholar
Gericke, S. & Kurmies, B. (1952). Die kolorimetrische Phosphorsäurebestimmung mit Ammonium-Vanadat-Molybdat and ihre Anwendung in der Pflanzenanalyse. Zeitschrift für Pflanzenernährnng, Düngung and Bodenkunde 59:235247.Google Scholar
Hirata, H., Masunaga, T. & Koiwa, H. (1988). Response of chickpea grown on Ando-soil to vesicular-arbuscular mycorrhizal infection in relation to the level of phosphorus application. Soil Science and Plant Nutrition 34:441449.CrossRefGoogle Scholar
Keatinge, J. D. H., Neate, P. J. H. & Shepherd, K. D. (1985). The role of fertilizer management in the development and expression of crop drought stress in cereals under Mediterranean environmental conditions. Experimental Agriculture 21:209222.CrossRefGoogle Scholar
Kothari, S. K., Marschner, H. & George, E. (1990). Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytologist 116:303311.CrossRefGoogle Scholar
Li, X.-L., George, E. & Marschner, H. (1991). Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant and Soil 136:4148.CrossRefGoogle Scholar
Marschner, H., Römheld, V., Horst, W. J. & Martin, P. (1986). Root-induced changes in the rhizosphere: Importance for the mineral nutrition of plants. Zeitschrift für Pflanzenernährung und Bodenkunde 149:441456.CrossRefGoogle Scholar
Matar, A. E. & Brown, S. C. (1989). Effect of rate and method of phosphate placement on productivity of durum wheat in a Mediterranean climate. II. Root distribution and P dynamics. Fertilizer Research 20:8388.CrossRefGoogle Scholar
Mosse, B. (1981). Vesicular-arbuscular Mycorrhiza Research for Tropical Agriculture. Research Bulletin 194. Hawaii: Institute of Tropical Agriculture and Human Resources, University of Hawaii.Google Scholar
Olsen, S. R. & Sommers, L. E. (1982). Phosphorus. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, 2nd ed., 403430 (Eds Page, A. L., Miller, R. H. and Keeney, D. R.). Madison: American Society of Agronomy.Google Scholar
Osman, A. E., Cocks, P. S., Russi, L. & Pagnotta, M. A. (1991). Response of Mediterranean grassland to phosphate and stocking rates: biomass production and botanical composition. Journal of Agricultural Science, Cambridge 116:3746.CrossRefGoogle Scholar
Phillips, J. M. & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55:158161.CrossRefGoogle Scholar
Plenchette, C., Fortin, J. A. & Furlan, V. (1983). Growth responses of several plant species to mycorrhizae in soil of moderate P-fertility. I. Mycorrhizal dependency under field conditions. Plant and Soil 70:199209.CrossRefGoogle Scholar
Raju, P. S., Clark, R. B., Ellis, J. R., Duncan, R. R. & Maranville, J. W. (1990). Benefit and cost analysis and phosphorus efficiency of VA mycorrhizal fungi colonizations with sorghum (Sorghum bicolor) genotypes grown at varied phosphorus levels. Plant and Soil 124:199204.CrossRefGoogle Scholar
Saxena, N. P., Krishnamurthy, L. & Sheldrake, A. R. (1988). Responses of chickpea to phosphorus application on a vertisol in a semi-arid environment. In Phosphorus in Indian Vertisols, 2324. Patancheru: ICRISAT.Google Scholar
Singh, M. & Tilak, K. V. B. R. (1989). Field response of chickpea to inoculation with Glomus versiforme. Plant and Soil 119:281284.CrossRefGoogle Scholar
Smithson, J. B., Thompson, J. A. & Summerfield, R. J. (1985). Chickpea (Cicer arietinum L.). In Grain Legume Crops, 312390 (Eds. Summerfield, R.J. and Roberts, E. H.). London: William Collins.Google Scholar
Tennant, D. (1975). A test of a modified line intersect method for estimation of root length. Journal of Ecology 63:9951001.CrossRefGoogle Scholar
Thompson, J. P. (1987). Decline of vesicular-arbuscular mycorrhizae in long fallow disorder of field crops and its expression in phosphorus deficiency of sunflower. Australian Journal of Agricultural Research 38:847867.CrossRefGoogle Scholar