Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-04T19:34:37.148Z Has data issue: false hasContentIssue false

SHORT- TO MID-TERM IMPACT OF CONSERVATION AGRICULTURE ON YIELD VARIABILITY OF UPLAND RICE: EVIDENCE FROM FARMER’S FIELDS IN MADAGASCAR

Published online by Cambridge University Press:  20 June 2014

GUILLAUME BRUELLE*
Affiliation:
CIRAD, UPR 115 AIDA, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Avenue Agropolis, 34398 Montpellier, Cedex 5, France
KRISHNA NAUDIN
Affiliation:
CIRAD, UPR 115 AIDA, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Avenue Agropolis, 34398 Montpellier, Cedex 5, France
ERIC SCOPEL
Affiliation:
CIRAD, UPR 115 AIDA, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Avenue Agropolis, 34398 Montpellier, Cedex 5, France
RAPHAËL DOMAS
Affiliation:
BRL, Lot II A 128 SGA Nanisana Iadiambola, 101 Antananarivo, Madagascar
LILIA RABEHARISOA
Affiliation:
Laboratoire des Radio-Isotopes, Route d’Andraisoro, BP 3383, 101 Antananarivo, Madagascar
PABLO TITTONELL
Affiliation:
CIRAD, UPR 115 AIDA, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Avenue Agropolis, 34398 Montpellier, Cedex 5, France Farming Systems Ecology, Wageningen University, P.O. Box 563, 6700AN Wageningen, The Netherlands
*
Corresponding author. Email: [email protected]; Contact address: TA B-102/02, Avenue Agropolis, 34398 Montpellier, Cedex 5, France.

Summary

Family farming in the tropics suffers from low crop productivity mainly due to a combination of poor soil fertility, low investment capacity, and a variable climate. The Lake Alaotra region of Madagascar is no exception and rainfed production is particularly hard hit. To evaluate the agronomic benefits of conservation agriculture (CA) in a region of erratic rainfall, we analysed four years of yield, management and climatic data from 3803 upland rice fields cultivated by farmers and monitored by researchers. Fields located on rainfed lowlands and hillsides were cultivated with sole rice using conventional tillage (Cv) or rice sown with no-tillage on dead organic mulch and rotated with other cereal/legume combinations (CA) from 2006 to 2011. A first global comparison across seasons, locations and years of adoption showed significantly higher average yields under CA, with no change in variance (on lowland: 2.6 ± 0.9 t ha–1 Cv, 2.8 ± 0.9 t ha–1 CA; on hillside: 2.1 ± 0.8 t ha–1 Cv, 2.4 ± 0.8 t ha–1 CA). Grouping fields according to the number of years under CA (first to fourth) revealed that CA gradually increased average yields and reduced the coefficient of variation in the short and mid-term (on lowland: +0.2 t ha–1 and –6% coefficient of variation; on hillside: +0.7 t ha–1 and –13% coefficient of variation, over four to six years of successive CA cropping). The average yield increase under CA was not associated with an increase in mineral fertiliser use, as farmers used the same amounts of fertilisers (or none) under Cv and CA. The comparison Cv versus CA also highlighted a major benefit of CA regarding climate: it widened the window of possible sowing dates. A classification and regression tree analysis of the entire dataset revealed that rice yield was more affected by agro-environmental factors than management factors (fertilisation, Cv or CA), and extreme climate variability such as the severe drought of 2007–2008 could not be offset by CA. The hypothesis of yield penalties during the first years of implementation of CA cannot be verified with the evidence presented in this study.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdalla, M. A., Mohamed, A. E. and Makki, E. K. (2007). The response of two-sorghum cultivars to conventional and conservation tillage systems in central Sudan. AMA – Agricultural Mechanization in Asia Africa and Latin America 38:6771.Google Scholar
Abiven, S. and Recous, S. (2007). Mineralisation of crop residues on the soil surface or incorporated in the soil under controlled conditions. Biology and Fertility of Soils 43:849852.CrossRefGoogle Scholar
Adekalu, K. O., Olorunfemi, I. A. and Osunbitan, J. A. (2007). Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria. Bioresource technology 98:912917.Google Scholar
Affholder, F., Jourdain, D., Quang, D. D., Tuong, T. P., Morize, M. and Ricome, A. (2010). Constraints to farmers’ adoption of direct-seeding mulch-based cropping systems: a farm scale modeling approach applied to the mountainous slopes of Vietnam. Agricultural Systems 103:5162.CrossRefGoogle Scholar
Akinyemi, J. (2003). Performance of cowpea under three tillage systems on an Oxic Paleustalf in southwestern Nigeria. Soil and Tillage Research 72:7583.CrossRefGoogle Scholar
Bakoariniaina, L. N., Kusky, T. and Raharimahefa, T. (2006) Disappearing Lake Alaotra: monitoring catastrophic erosion, waterway silting, and land degradation hazards in Madagascar using Landsat imagery. Journal of African Earth Sciences 44:241252.Google Scholar
Barton, A. P., Fullen, M. A., Mitchell, D. J., Hocking, T. J., Liu, L., Wu Bo, Z., Zheng, Y. and Xia, Z. Y. (2004). Effects of soil conservation measures on erosion rates and crop productivity on subtropical ultisols in Yunnan Province, China. Agriculture, Ecosystems & Environment 104:343357.Google Scholar
Baudron, F., Andersson, J. A., Corbeels, M. and Giller, K. E. (2012) Failing to yield? Ploughs, conservation agriculture and the problem of agricultural intensification: an example from the Zambezi Valley, Zimbabwe. Journal of Development Studies 48:393412.Google Scholar
Bolliger, A., Magid, J. and Amado, J. C. T. (2006). Taking stock of the Brazilian “Zero-Till Revolution”: a review of landmark research and farmers’ practice. Advances in Agronomy 91:47110.Google Scholar
Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classification and Regression Trees. Belmont, CA, USA: Wadsworth Google Scholar
Delmotte, S., Tittonell, P., Mouret, J., Hammond, R. and Lopez-Ridaura, S. (2011). On farm assessment of rice yield variability and productivity gaps between organic and conventional cropping systems under Mediterranean climate. European Journal of Agronomy 35:223236.Google Scholar
Devèze, J.-C. (2006). Réflexions sur l’avenir des agricultures familiales du lac Alaotra Madagascar. p. 38.Google Scholar
FAO (2013). Conservation agriculture homepage. Available at: http://www.fao.org/ag/ca./ Last accessed on 5 March 2013.Google Scholar
Findeling, A., Ruy, S. and Scopel, E. (2003). Modeling the effects of a partial residue mulch on runoff using a physically based approach. Journal of Hydrology 275:4966.CrossRefGoogle Scholar
Giller, K. E., Corbeels, M., Nyamangara, J., Triomphe, B., Affholder, F., Scopel, E. and Tittonell, P. (2011). A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crops Research 124:468472.Google Scholar
Giller, K. E., Witter, E., Corbeels, M. and Tittonell, P. (2009) Conservation agriculture and smallholder farming in Africa: the heretics’ view. Field Crops Research 114:2334.Google Scholar
Laurent, J.-B., Mézino, M. and Enjalric, F. (2011). Manamora: Base de données mutualisée pour la Gestion des parcelles en SCV. IDDN.FR.001.160007.000.S.P.2013.000.10000.Google Scholar
MAEP (2004) Compte rendu de la visite au lac Alaotra du 06 et 07 juin 2004.Google Scholar
Naudin, K., Gozé, E., Balarabe, O., Giller, K. E. and Scopel, E. (2010). Impact of no tillage and mulching practices on cotton production in North Cameroon: a multi-locational on-farm assessment. Soil and Tillage Research 108:6876.CrossRefGoogle Scholar
Naudin, K. and Rasolofo, L. I. (2012). Contrôle de l’émergence des adventices par le paillage en riziculture pluviale à Madagascar. 1ère Conférence Internationale sur les Systèmes de Production Rizicole Biologique, du 27 au 30 août 2012, Montpellier France. p 2.Google Scholar
Pannell, D. J., Marshall, G. R., Barr, N., Curtis, A., Vanclay, F. and Wilkinson, R. (2006). Understanding and promoting adoption of conservation practices by rural landholders. Australian Journal of Experimental Agriculture 46:1407.CrossRefGoogle Scholar
Penot, E., Scopel, E., Domas, R. and Naudin, K. (2010). La durabilité est elle soluble dans le développement? L’adoption des techniques de conservation de l’agriculture dans un contexte d’incertitudes multiples au lac Alaotra, Madagascar.Google Scholar
R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.Google Scholar
Razafimbelo, T. M., Albrecht, A., Oliver, R., Chevallier, T., Chapuis-Lardy, L. and Feller, C. (2008). Aggregate associated-C and physical protection in a tropical clayey soil under Malagasy conventional and no-tillage systems. Soil and Tillage Research 98:140149.CrossRefGoogle Scholar
Rusinamhodzi, L., Corbeels, M., van Wijk, M. T., Rufino, M. C., Nyamangara, J., Giller, K. E. and Wijk, M. T. (2011). A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agronomy for Sustainable Development 31:657673.CrossRefGoogle Scholar
Scopel, E., Findeling, A., Guerra, E. C. and Corbeels, M. (2005). Impact of direct sowing mulch-based cropping systems on soil carbon, soil erosion and maize yield. Agronomy for Sustainable Development 25:425432.CrossRefGoogle Scholar
Scopel, E., Da Silva, F. A. M., Corbeels, M., Affholder, F. and Maraux, F. (2004). Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomie 24:383395.CrossRefGoogle Scholar
Scopel, E., Triomphe, B., Affholder, F., Da Silva, F. A. M., Corbeels, M., Xavier, J. H. V., Lahmar, R., Recous, S., Bernoux, M., Blanchart, E., Mendes, I. and Tourdonnet, S. (2012). Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. a review. Agronomy for Sustainable Development 33:113130.Google Scholar
Teasdale, J. R. and Mohler, C. L. (2009) The quantitative relationship between weed emergence and the physical properties of mulches. Weed Science 48:385392.Google Scholar
Teyssier, A. (1994). Contrôle de l’espace et développement rural dans l’ouest Alaotra: de l’analyse d’un système agraire à un projet de gestion de l’espace rural. p. 473 + annexes.Google Scholar
Thierfelder, C., Cheesman, S. and Rusinamhodzi, L. (2013a). Benefits and challenges of crop rotations in maize-based conservation agriculture (CA) cropping systems of southern Africa. International Journal of Agricultural Sustainability 11:108124.Google Scholar
Thierfelder, C., Chisui, J. L., Gama, M., Cheesman, S., Jere, Z. D., Trent Bunderson, W., Eash, N. S. and Rusinamhodzi, L. (2013b). Maize-based conservation agriculture systems in Malawi: long-term trends in productivity. Field Crops Research 142:4757.Google Scholar
Thierfelder, C., Mwila, M. and Rusinamhodzi, L. (2013c). Conservation agriculture in eastern and southern provinces of Zambia: long-term effects on soil quality and maize productivity. Soil and Tillage Research 126:246258.CrossRefGoogle Scholar
Tittonell, P., Scopel, E., Andrieu, N., Posthumus, H., Mapfumo, P., Corbeels, M., van Halsema, G. E., Lahmar, R., Lugandu, S., Rakotoarisoa, J., Mtambanengwe, F., Pound, B., Chikowo, R., Naudin, K., Triomphe, B. and Mkomwa, S. (2012). Agroecology-based aggradation-conservation agriculture (ABACO): targeting innovations to combat soil degradation and food insecurity in semi-arid Africa. Field Crops Research 132:168174.Google Scholar
Tittonell, P., Shepherd, K., Vanlauwe, B. and Giller, K. E. (2008). Unravelling the effects of soil and crop management on maize productivity in smallholder agricultural systems of western Kenya – an application of classification and regression tree analysis. Agriculture, Ecosystems & Environment 123:137150.Google Scholar
Waliser, D. E. and Moncrieff, M. (2011). The “Year” of tropical convection (May 2008 to April 2010): climate variability and weather highlights. American Meteorological Society 93:11891218.Google Scholar
Wilhelm, L. and Ravelomanantsoa, O. (2006). Première approche de la problématique famille/genre/jeunes ruraux pour appréhender le devenir des agricultures familiales autour du Lac Alaotra. p. 48.Google Scholar