Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-07T16:35:41.521Z Has data issue: false hasContentIssue false

Relationship of Base Temperature to Development of Spring Wheat

Published online by Cambridge University Press:  03 October 2008

Alejandro H. Del Pozo
Affiliation:
Instituto de Investigaciones Agropecuarias, Estación Experimental Quilamapu, Chillán
Jorge García-Huidobro
Affiliation:
Instituto de Investigaciones Agropecuarias, Estación Experimental La Platina, Santiago, Chile
Rafael Novoa
Affiliation:
Instituto de Investigaciones Agropecuarias, Estación Experimental La Platina, Santiago, Chile
Sergio Villaseca
Affiliation:
Instituto de Investigaciones Agropecuarias, Estación Experimental La Platina, Santiago, Chile

Summary

The base temperature and thermal time for different development stages of spring wheat cultivars were calculated using a linear relation between the rate of development and the mean temperature. The results show that germination, emergence, tillering and leaf elongation (the vegetative phase) have a base temperature around 2°C but the elongation of the culm and the reproductive phase (tillering-maturity) have a base temperature over 6°C. A general model to describe the time to maturity of spring wheats, which takes account of these different phases, is proposed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Angus, J. F., Cunningham, R. B., Moncur, M. W. & Mackenzie, D. H. (1981a). Phasic development in field crops. I. Thermal response in the seedling phase. Field Crops Research 3: 365378.Google Scholar
Angus, J. F., Mackenzie, D. H., Morton, R. & Schafer, C. A. (1981b). Phasic development in field crops. II. Thermal and photoperiodic responses of spring wheat. Field Crops Research 4: 269283.Google Scholar
Baker, C. K. & Gallagher, J. N. (1983). The development of winter wheat in the field. 2. The control of primordium initiation rate by temperature and photoperiod. Journal of Agricultural Science, Cambridge 101: 337344.CrossRefGoogle Scholar
Basset, I. J., Holmes, R. M. & Mackay, K. H. (1961). Phenology of several plant species at Ottawa, Ontario and examination of the influence of air temperatures. Canadian Journal of Plant Science 41: 643652.CrossRefGoogle Scholar
Bennet, C. A. & Franklin, N. L. (1966). Statistical analysis in chemistry and the chemical industry. Chichester: John Wiley & Sons.Google Scholar
Bierhuizen, J. F. (1973). The effect of temperature on plant growth, development and yield. In Plant Response to Climatic Factors, 8998 (Ed. Slatyer, R. D.). Proceedings of Uppsala Symposium 1970. Ecology and Conservation 5. UNESCO.Google Scholar
Cooper, P. J. M. (1979). The association between altitude, environmental variables, maize growth and yields in Kenya. Journal of Agricultural Science, Cambridge 93: 635649.CrossRefGoogle Scholar
De Jong, R. & Best, K. F. (1979). The effect of soil water potential, temperature and seedling depth on seedling emergence of wheat. Canadian Journal of Soil Science 59: 259264.CrossRefGoogle Scholar
Durand, R. (1969). Signification et portée des sommes de températures. Bulletin Technique Informative de Ministere d'Agriculture 238: 185190.Google Scholar
Durand, R., Bonhomme, R. & Deriux, M. (1982). Seuil optimal des sommes de températures, application au maïs (Zea mays L). Agronomie 2: 584597.Google Scholar
Gallagher, J. N., Biscoe, P. V. & Wallace, J. S. (1979). Field studies of cereal leaf growth. IV. Winter wheat leaf extension in relation to temperature and water status. Journal of Experimental Botany 30: 657668.Google Scholar
GarcíA-Huidobro, J., Monteith, J. L. & Squire, G. R. (1982). Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.). I. Constant temperature. Journal of Experimental Botany 33: 288296.CrossRefGoogle Scholar
Hegarty, T. W. (1973). Temperature coefficient (Q10), seed germination and other biological processes. Nature 243: 305306.CrossRefGoogle Scholar
Kirby, E. J. M., Appleyard, M. & Fellowes, G. (1982). Effect of sowing date on the temperature response of leaf emergence and leaf size in barley. Plant, Cell and Environment 5: 477484.Google Scholar
Lindstrom, M. J., Papendick, R. I. & Koehler, F. E. (1976). A model to predict winter wheat emergence as affected by soil temperature, water potential and depth of planting. Agronomy Journal 68: 137141.CrossRefGoogle Scholar
Monteith, J. L. (1977). Climate. In Ecophysiology of Tropical Crops, 125. (Eds Alvim, P. de T. & Kozlowski, T. T.). New York: Academic Press.Google Scholar
Monteith, J. L. (1984). Consistency and convenience in the choice of units for agricultural science. Experimental Agriculture 20: 125–117.CrossRefGoogle Scholar
Nuttonson, M. Y. (1955). Wheat-climate Relationship and the Use of Phenology in Ascertaining the Thermal and Photo-thermal Requirements of Wheat. Washington DC: American Institute of Crop Ecology.Google Scholar
Ong, C. K. (1983). Response to temperature in a stand of pearl millet (Pennisetum typhoides S. & H.). 1. Vegetative response. Journal of Experimental Botany 34: 322336.Google Scholar
Rouanet, J. L. (1979). Estudio ‘in situ’ de la productividad máxima y razgos fitométricos de un cultivo de Triticum aestivum L. var. Huenufen. Informe Técnico 1978–1979. Estación Experimental Carillanca, Temuco. Institute de Investigaciones Agropecuarias de Chile.Google Scholar
Russelle, M. F. & Bolton, F. E. (1980). Soil temperature effects on winter wheat and winter barley emergence in the field. Agronomy Journal 72: 823827.Google Scholar
Salgado, E. A. (1978). Evaluación agrofísica de la productividad del trigo (Triticum aestivum L.) bajo diferentes regímenes hídricos. MSc thesis, Universidad Católica de Chile.Google Scholar
Villaseca, S. & Novoa, R. (1984). Fenología y sumas de temperaturas en cinco variedades de trigo. Informe Técnico 1983–1984. Estación Experimental La Platina. Santiago. Institute de Investigaciones Agropecuarias de Chile.Google Scholar
Wang, J. Y. (1960). A critique of the wheat unit approach to plant response studies. Ecology 41: 785790.CrossRefGoogle Scholar
Watt, W. R. (1972). Leaf extension in Zea mays. I. Leaf extension and water potential in relation to root-zone and air temperatures. Journal of Experimental Botany 23: 704712.Google Scholar
Weir, A. H., Bragg, P. L., Porter, J. R. & Rayner, J. H.(1984). A winter wheat crop simulation model without water or nutrient limitation. Journal of Agricultural Science, Cambridge 102: 371382.CrossRefGoogle Scholar