Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T03:32:10.740Z Has data issue: false hasContentIssue false

INTERACTION BETWEEN THE MANAGEMENT OF SOIL FERTILITY AND MACROFAUNA REDUCES RUNOFF ON A LIXISOL IN THE NORTH-SUDANIAN ZONE OF BURKINA FASO

Published online by Cambridge University Press:  22 February 2016

JEAN OUEDRAOGO*
Affiliation:
Institut du Développement Rural, Laboratoire d’étude et de recherche sur la fertilité des sols (LERF), Université Polytechnique de Bobo-Dioulasso, 01 BP 1091, Bobo-Dioulasso, Burkina Faso
ELISÉE OUEDRAOGO
Affiliation:
Banque Mondiale, 01 BP 622, Ouagadougou 01, Burkina Faso
MAMADOU TRAORE
Affiliation:
Institut du Développement Rural, Laboratoire d’étude et de recherche sur la fertilité des sols (LERF), Université Polytechnique de Bobo-Dioulasso, 01 BP 1091, Bobo-Dioulasso, Burkina Faso
SANSAN YOUL
Affiliation:
International Fertilizer Development Center, 11 BP 82, Ouagadougou 11, Burkina Faso
HASSAN BISMARCK NACRO
Affiliation:
Institut du Développement Rural, Laboratoire d’étude et de recherche sur la fertilité des sols (LERF), Université Polytechnique de Bobo-Dioulasso, 01 BP 1091, Bobo-Dioulasso, Burkina Faso
*
Corresponding author. Email: [email protected]

Summary

A study that aims to assess the impact of the interaction between soil macrofauna and soil fertility management methods on runoff, was conducted in the north-sudanian zone of Burkina Faso on a Lixisol with an average slope of 1.5%. Runoff was measured using a runoff plot of 1.04 m2 and crop yields were measured on the effective area of the elementary plot. Biocide treatments used to control the population of macrofauna have eliminated 95% to 99% of soil macrofauna. Except for urea treatment, the results showed that the presence of macrofauna has led to the reduction of runoff in the other treatments. The absolute contribution of macrofauna to runoff varied between 24.58% and 30.74%. Runoff reduction was higher on soil management based on sorghum straw + urea (71.24% in 2008 and 78.80% in 2009) in the presence of soil macrofauna. We concluded that in cropping systems with low external inputs, stimulating the activity of macrofauna by burying material with high ratio of carbon to nitrogen reduces runoff and thus maintains the potential of farm land.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, J. M. and Ingram, J. S. I. (1993). Tropical soil biology and fertility . A Handbook of Methods, 2nd edn. Oxon, UK: CAB International, Wallingford.Google Scholar
Ayuke, F. O., Brussaard, L., Vanlauwe, B., Six, J., Lelei, D. K., Kibunja, C. N. and Pulleman, M. M. (2011). Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Applied Soil Ecology 48:5362.Google Scholar
Bababe, B. (1998). Crop residue application systems and efficiency of water use by pearl millet in northern Nigeria. In Soil Fertility Management in West African Land Use Systems, 6166 (Eds Renard, G., Neef, A., Becker, K. and Von Oppen, M.). Weikersheim, Germany: Margraf Verlag.Google Scholar
Bachelier, G. (1978). La faune des sols. Son écologie et son action. Initiations – Documentations Techniques N° 38, Paris, France: O.R.S.T.O.M.Google Scholar
Bationo, A., Kihara, J., Vanlauwe, B., Waswa, B. and Kimetu, J. (2007). Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agricultural Systems 94:1325.Google Scholar
Bland, R. G. and Jaques, H. E. (1947). How to Know the Insects, 3rd edn. Dubrique, Lowa: Wm. C. Brown Company Publishers.Google Scholar
Blouin, M., Hodson, M. E., Delgado, E. A., Baker, G., Brussaard, L., Butt, K. R., Dai, J., Dendooven, L., Peres, G., Tondoh, J. E., Cluzeau, D. and Brun, J. J. (2013). A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science 64:161182.Google Scholar
Cattan, P., Letourmy, P., Zagré, B., Minougou, A. and Compaoré, E. (2001). Rendement de l'arachide et du sorgho en rotation sous différents itinéraires techniques au Burkina Faso. Cahiers Agricultures 10 (3):159172.Google Scholar
Diop, A., Ndiaye, A. B. and Ba, C. T. (2013). Décomposition de la bouse de bovin sèche et macrofaune associée en zone sahélienne semi-aride (Matam, Sénégal). International Journal of Biological and Chemical Sciences 7 (1):147162 CrossRefGoogle Scholar
Hallaire, V., Lamandé, M. and Heddadj, D. (2004). Effet de l'activité biologique sur la structure des sols soumis à différentes pratiques culturales. Impact sur leurs propriétés de transfert. Etude et Gestion des Sols 11:4758.Google Scholar
Jouquet, P., Janeau, J.-L., Pisano, A., Sy, H. T., Orange, D., Minh, L. T. N. and Valentin, C. (2012). Influence of earthworms and termites on runoff and erosion in a tropical steep slope fallow in Vietnam: A rainfall simulation experiment. Applied Soil Ecology 61:161168.Google Scholar
Jouquet, P., Podwojewski, P., Bottinelli, N., Mathieu, J., Ricoy, M., Orange, D., Tran, D. T. and Valentin, C. (2008). Above-ground earthworm casts affect water runoff and soil erosion in Northern Vietnam. Catena 74 (1):1321.Google Scholar
Koulibaly, B., Traoré, O., Dakuo, D., Zombré, P. N. and Bondé, D. (2010). Effet de la gestion des résidus de récolte sur les rendements et les bilans culturaux d'une rotation cotton-maïs-sorgho au Burkina Faso. Tropicultura 28 (3):184189.Google Scholar
Lapied, E., Nahmani, J. and Rousseau, G. X. (2009). Influence of texture and amendments on soil properties and earthworm communities. Applied Soil Ecology 43:241249.Google Scholar
Larsen, M. C., Liu, Z. and Zou, X. (2012). Effects of earthworms on slopewash, surface runoff, and fine-litter transport on a humid-tropical forested hillslope in eastern puerto rico. In Water Quality and Landscape Processes of Four Watersheds in Eastern Puerto Rico, 179198 (Eds Murphy, S. F. and Stallard, R. F.). Professional paper 1789-G. Reston, VA U.S. Department of the Interior, U.S. Geological Survey.Google Scholar
Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P. and Rossi, J.-P. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology 42:S3S15.CrossRefGoogle Scholar
Mafongoya, P. L., Bationo, A., Kihara, J. and Waswa, B. S. (2006). Appropriate technologies to replenish soil fertility in southern Africa. Nutrient Cycling in Agroecosystems 76:137151.CrossRefGoogle Scholar
Mando, A., Bonzi, M., Wopereis, M. C. S., Lompo, F. and Stroosnijder, L. 2005. Long-term effects of mineral and organic fertilization on soil organic matter fractions and sorghum yield under Sudano-Sahelian conditions. Soil Use and Management 21:396401.CrossRefGoogle Scholar
Marhan, S. (2004). Effects of earthworms on stabilisation and mobilisation of soil organic matter. Dissertation, Fachbereich Biologie der Technischen Universität Darmstadt.Google Scholar
Menard, O. (2005). Les ouvriers du sol et les pratiques agricoles de conservation. Colloque en Agroenvironnement: « des outils d'intervention à notre échelle ». Ville de Québec, QC: Centre de référence en agriculture et agroalimentaire du Québec.Google Scholar
Montoroi, J. P. (1991). Parcelle de ruissellement d'1 m2 équipée pour des mesures tensiométriques (pression de l'eau dans le sol) et neutrométriques (teneur en eau dans le sol) effectuées sous pluies simulées et naturelles (vue prise après une pluie naturelle). IRD, document 18149.Google Scholar
Niang, D. (2006). Fonctionnement hydrique de différents types de placages sableux dans le sahel Burkinabè. Thèse de Doctorat ès Sciences. Faculté de l'environnement naturel, architectural et construit. Switzerland: École Polytechnique Fédérale de Lausanne.Google Scholar
Ouattara, B., Ouattara, K., Serpentié, G., Mando, A, Sédogo, M. P. and Bationo, A. 2006. Intensity cultivation induced effects on soil organic carbon dynamic in the western cotton area of Burkina Faso. Nutrient Cycling in Agroecosystems 76:331339.CrossRefGoogle Scholar
Ouédraogo, E., Brussaard, L. and Stroosnijder, L. (2007). Soil macrofauna and organic amendment interactions affects soil carbon and crop performance in semi-arid West Africa. Biology and Fertility of Soils 44 (2):343351.CrossRefGoogle Scholar
Ouédraogo, E., Mando, A. and Brussaard, L. (2004). Soil macrofaunal-mediated organic resource disappearance in semi-arid West Africa. Applied Soil Ecology 27:259267.Google Scholar
Ouédraogo, E., Mando, A. and Stroosnijder, L. (2006). Effects of tillage, organic resources and nitrogen fertiliser on soil carbon dynamics and crop nitrogen uptake in semi-arid West Africa. Soil and Tillage Research 91 (1–2):5767 Google Scholar
Ouédraogo, J., Nacro, H. B., Ouédraogo, E., Youl, S. and Sedogo, M. P. (2014). Amélioration de la disponibilité du phosphore par la gestion de la macrofaune du sol: Cas d'un lixisol en zone semi-aride du Burkina Faso. International Journal of Biological and Chemical Sciences 8 (4):18381846.CrossRefGoogle Scholar
Penna, D., Tromp-van Meerveld, H. J., Gobbi, A., Borga, M. and Dalla Fontana, G. (2011). The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrology and Earth System Sciences 15:689702.CrossRefGoogle Scholar
Pieri, C. (1989). Fertilité des Terres de Savanes. Bilan de Trente ans de Recherche et de Développement Agricole au Sud du Sahara. Montpellier, France: Ministère de la Coopération et du Développement, CIRAD-IRAT.Google Scholar
Powlson, D. S., Whitmore, A. P. and Goulding, K. W. T. (2011). Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false. Review. European Journal of Soil Science 62:4255.Google Scholar
Rashmi, M. A., Kumar, N. G. and Mallikarjuna, J. (2009). Effects of pesticides and agro-inputs on the abundance of soil macro fauna. Karnataka Journal of Agricultural Science 22(3-Special Issue):635636.Google Scholar
Schon, N. L., Mackay, A. D., Hedley, M. J. and Minor, M. A. (2012). The soil invertebrate contribution to nitrogen mineralisation differs between soils under organic and conventional dairy management. Biology and Fertility of Soils 48:3142 CrossRefGoogle Scholar
Shuster, W. D., McDonald, L. P., McCartney, D. A., Parmelee, R. W., Studer, N. S. and Stinner, B R. (2002). Nitrogen source and earthworm abundance affected runoff volume and nutrient loss in a tilled-corn agroecosystem. Biology and Fertility of Soils 35:320327.Google Scholar
Sileshi, G. and Mafongoya, P. L. (2006). Long-term effects of improved legume fallows on soil invertebrate macrofauna and maize yield in eastern Zambia. Agriculture, Ecosystems and Environment 115:6978.Google Scholar
Sileshi, G. and Mafongoya, P. L. (2007). Quantity and quality of organic inputs from coppicing leguminous trees influence abundance of soil macrofauna in maize crops in eastern Zambia. Biology and Fertility of Soils 43 (3):333340.Google Scholar
Villiers, A. (1979). Initiation à l'entomologie. Tome 1: Anatomie, Biologie et Classification, Paris, France: Nouvelle société des éditions Boubée et Cie.Google Scholar
WRB (World Reference Base for Soil Resources). (2006). A Framework for International Classification, Correlation and Communication. Rome, Italy: FAO.Google Scholar
Yaméogo, J. T., Somé, N. A, Mette Lykke, A., Hien, M. and Nacro, H. B. (2013). Restauration des potentialités de sols dégradés à l'aide du zaï et des cordons pierreux à l'Ouest du Burkina Faso. Tropicultura 31 (4):224230.Google Scholar
Zhao, N., Yu, F., Li, C., Wang, H., Liu, J. and Mu, W. (2014). Investigation of rainfall-runoff processes and soil moisture dynamics in grassland plots under simulated rainfall conditions. Water 6:26712689.Google Scholar
Zida, Z., Ouédraogo, E., Mando, A. and Stroosnijder, L. (2011). Termite and earthworm abundance and taxonomic richness under long-term conservation soil management in Saria, Burkina Faso, West Africa. Applied Soil Ecology 51:122129.Google Scholar
Zougmoré, R. (2003). Integrated water and nutrient management for sorghum production in semi–arid Burkina Faso. Tropical Resource Management Papers 45, Wageningen, Pays Bas.Google Scholar