Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-07T15:46:30.345Z Has data issue: false hasContentIssue false

Evolution of Grain Legumes. III. Pulses in the Genus Vigna

Published online by Cambridge University Press:  03 October 2008

J. Smartt
Affiliation:
Department of Biology, Building 44, The University, Southampton S09 5NH, England

Summary

The genus Vigna includes seven species of pulse, two African and five Asian. While the Asian species are within the subgenus Ceratotropis, the two African species are in different sections of the subgenus Vigna, namely Catjang (V. unguiculata) and Vigna (V. subterranea). Limited gene flow is possible within subgenus Ceratotropis, but none has as yet been demonstrated between subgenera nor between sections within subgenus Vigna. Parallel evolutionary trends are apparent in all species, with considerable increase in seed and pod size. Erect bush forms have evolved in all cultigens except V. aconitifolia and V. subterranea. The former has not apparently changed much in vegetative form under domestication, while the geocarpy of the latter precludes erect growth. Future prospects for the Asiatic grams would be better if yield levels could be improved. The cowpea is likely to remain an important crop at present levels of performance although there is room for improvement. There seems little immediate prospect of expanded ground bean production under existing conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahn, , Soon, Chang & Hartmann, R. W. (1978). Interspecific hybridization among four species of the genus Vigna Savi. In Report of First International Mungbean Symposium, 240246. Los Baños: University of the Philippines.Google Scholar
Arora, P. K., Chandel, K. P. S. & Ioshi, B. S. (1973). Morphological diversity in Phaseolus sublobatus Roxb. Current Science 42:359361.Google Scholar
Bailey, R. W. (1971). Polysaccarides in the Leguminosae. In Chemotaxonomy of the Leguminosae, 503541. (Eds Harbome, J. B., Boulter, D. & Turner, B. L.). London: Academic Press.Google Scholar
Biswas, M. R. & Dana, S. (1975). Interchange heterozygosity in a triploid species hybrid of Phaseolus. Indian Agriculturalist 19:273274.Google Scholar
Biswas, M. R. & Dana, S. (1976a). Phaseolus aconitifolius × Phaseolus trilobus. Indian Journal of Genetics and Plant Breeding 36:125131.Google Scholar
Biswas, M. R. & Dana, S. (1976b). Meiosis in amphidiploid of Phaseolus aureus Roxb. × P. calcaratus Roxb. Journal of the Society of Experimental Agriculturists 1:4344.Google Scholar
Bose, R. D. (1939). Studies in Indian pulses. IV. Mung or green gram (Phaseolus aureus Roxb.) Indian Journal of Agricultural Science 2:607624.Google Scholar
Dana, S. (1964). Interspecific cross between tetraploid Phaseolus species and P. riccardianus Ten. Nucleus (Calcutta) 7:110.Google Scholar
Dana, S. (1966a). Species cross between Phaseolus aureus Roxb. and P. trilobus Ait. Cytologia 31:176187.CrossRefGoogle Scholar
Dana, S. (1966b). Interspecific hybrid between Phaseolus mungo L. × P. trilobus Ait. Journal of Cytology and Genetics (India) 1:6166.Google Scholar
Dana, S. (1966c). Cross between Phaseolus aureus Roxb. and P. riccardianus Ten. Genetica Iberica 18:141156.Google Scholar
Dana, S. (1966d). Chromosome differentiation in tetraploid Phaseolus species and P. riccardianus Ten. Nucleus (Calcutta) 9:97101.Google Scholar
De, D. N. & Krishnan, R. (1966). Cytological studies of the hybrid Phaseolus aureus × P mungo. Genetica 37:588600.Google Scholar
Duke, J. (1981). Handbook of Legumes of World Economic Importance. New York: Plenum.CrossRefGoogle Scholar
Faris, D. G. (1964). The chromosome number of Vigna sinensis (L.) Savi. Canadian Journal of Genetics and Cytology 6:255258.CrossRefGoogle Scholar
Faris, D. G. (1965). The origin and evolution of the cultivated forms of Vigna sinensis. Canadian Journal of Genetics and Cytology 7:433452.CrossRefGoogle Scholar
Gupta, Y. P. (1982). Nutritive value of food legumes. In Chemistry and Biochemistry of Legumes, 287327 (Ed. Arora, S. K.). New Delhi: Oxford and IBH.Google Scholar
Hepper, F. N. (1963). Plants of the 1957–58 West African Expedition. II. The Bambara groundnut (Voandzeia subterranea) and Kersting's groundnut (Kerstingiella geocarpa) wild in West Africa. Kew Bulletin 16:395407.CrossRefGoogle Scholar
Hymowitz, T. (1972). The trans-domestication concept as applied to guar. Economic Botany 26:4960.CrossRefGoogle Scholar
Jain, H. K. & Mehra, K. L. (1980). Evolution, adaptation, relationships and uses of the species of Vigna cultivated in India. In Advances in Legume Science, 459468 (Eds Summerfield, R. J. & Bunting, A. H.). London: HMSO.Google Scholar
Klozová, E. (1965). Interrelations among seven Asiatic species of the genus Phaseolus studied by immunochemical methods. In Proceedings of the Symposium on the Mutational Process, Prague, August 9–11, 1965, 485487. Prague: Academia.Google Scholar
Krishnan, R. & De, D. N. (1965). Studies on pachytene and somatic chromosomes of Phaseolus aureus. Nucleus (Calcutta) 8:716.Google Scholar
Krishnan, R. & De, D. N. (1968a). Cytogenetical studies in Phaseolus I. Autotetraploid Phaseolus aureus × a tetraploid species of Phaseolus and the backcrosses. Indian Journal of Plant Breeding and Genetics 28:1222.Google Scholar
Krishnan, R. & De, D. N. (1968b). Cytogenetical studies in Phaseolus II. Phaseolus mungo × tetraploid Phaseolus species and the amphidiploid. Indian Journal of Plant Breeding and Genetics 28:2330.Google Scholar
Liener, I. E. (1982). Toxic constituents in legumes. In Chemistry and Biochemistry of Legumes. 217257 (Ed. Arora, S. K.) New Delhi: Oxford and IBH.Google Scholar
Lukoki, L., Maréchal, R. & Otoul, E. (1980). Les ancêtres sauvages des haricots cultivées: Vigna radiata L. Wilczek et V. mungo (L.) Hepper. Bulletin du Jardin Botanique de Belgique 50:385391.CrossRefGoogle Scholar
Lush, W. M. (1979). Floral morphology of wild and cultivated cowpeas. Economic Botany 33:442447.CrossRefGoogle Scholar
Lush, W. M. & Evans, L. T. (1980). The seed coats of cowpeas and other grain legumes: structure in relation to function. Field Crops Research 3:267286.CrossRefGoogle Scholar
Lush, W. M. & Evans, L. T. (1981). The domestication and improvement of cowpeas (Vigna unguiculata (L.) Walp.) Euphytica 30:579587.CrossRefGoogle Scholar
Machado, M., Tai, W. & Baker, L. R. (1982). Cytogenetic analysis of the interspecific hybrid Vigna radiata × V. umbellata. Journal of Heredity 73:205208.CrossRefGoogle Scholar
Maréchal, R. (1982). Arguments for the global conception of the genus Vigna. Taxon 31:280283.CrossRefGoogle Scholar
Maréchal, R., Mascherpa, J. M. & Stainier, F. (1978). Etude taxonomique d'un groupe complexe d'espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l'analyse informatique. Boissiera (Genève) 28:1273.Google Scholar
Mossé, J. & Pernollet, J. C. (1982). Storage proteins of legume seeds. In Chemistry and Biochemistry of Legumes, 111193 (Ed. Arora, S. K.). New Delhi: Oxford and IBH.Google Scholar
Ohwi, J. (1965). Flora of Japan (English translation). Washington D. C.: Smithsonian Institution.Google Scholar
Rawal, K. M. (1975). Natural hybridization among wild, weedy and cultivated Vigna unguiculata (L.) Walp. Euphytica 24:699707.CrossRefGoogle Scholar
Satyan, B. A., Mahishi, D. M. & Shivashankar, G. (1982). Meiosis in the hybrid between greengram and rice bean. Indian Journal of Genetics and Plant Breeding 42:356359.Google Scholar
Sen, N. K. & Ghosh, A. K. (1961). Genetic studies in green gram. Indian Journal of Genetics and Plant Breeding 19:210227.Google Scholar
Singh, D. & Mehta, T. R. (1953). Inheritance of lobed leaf character in mung. Current Science 22:248.Google Scholar
Smartt, J. (1976). Tropical Pulses. London: Longman.Google Scholar
Smartt, J. (1980). Evolution and evolutionary problems in food legumes. Economic Botany 34:219235.CrossRefGoogle Scholar
Smith, P. M. (1976). Minor crops. In Evolution of Crop Plants, 301324 (Ed. Simmonds, N. W.). London: Longman.Google Scholar
Steele, W. M. (1976). Cowpeas. In Evolution of Crop Plants, 183185. (Ed. Simmonds, N. W.). London: Longman.Google Scholar
Steele, W. M. & Mehra, K. L. (1980). Structure, evolution and adaptation to farming systems and environments in Vigna. In Advances in Legume Science, 393404 (Eds Summerfield, R. J. & Bunting, A. H.). London: HMSO.Google Scholar
Tindall, H. D. (1983). Vegetables in the Tropics. London: Macmillan.CrossRefGoogle Scholar
Toms, G. C. & Western, A. (1971). Phytohaemagglutinins. In Chemotaxonomy of the Leguminosae, 367462 (Eds Harbome, J. B., Boulter, D. & Turner, B. L.). London: Academic Press.Google Scholar
Verdcourt, B. (1970). Studies in the Leguminosae–Papilionoidae for the Flora of Tropical East Africa IV. Kew Bulletin 24:507569.CrossRefGoogle Scholar
Verdcourt, B. (1978). The demise of two geocarpic legume genera. Taxon 27:219222.CrossRefGoogle Scholar
Verdcourt, B. (1980). The classification of Dolichos L. emend. Verdc., Lablab Adans. Phaseolus L., Vigna Savi and their allies. In Advances in Legume Science, 4548 (Eds Summerfield, R. J. & Bunting, A. H.). London: HMSO.Google Scholar
Verdcourt, B. (1981). The correct name for the Bambara groundnut. Kew Bulletin 35:474.CrossRefGoogle Scholar
Westphal, E. (1974). Pulses in Ethiopia, their Taxonomy and Agricultural Significance. Wageningen: Centre for Agricultural Publishing and Documentation.Google Scholar