Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T03:58:23.388Z Has data issue: false hasContentIssue false

CARBON STOCKS, LITTERFALL AND PRUNING RESIDUES IN MONOCULTURE AND AGROFORESTRY CACAO PRODUCTION SYSTEMS

Published online by Cambridge University Press:  06 May 2018

ULF SCHNEIDEWIND*
Affiliation:
Department of Physical Geography, Georg-August University, Goldschmidstr. 5, 37077 Göttingen, Germany
WIEBKE NIETHER
Affiliation:
Department of Physical Geography, Georg-August University, Goldschmidstr. 5, 37077 Göttingen, Germany
LAURA ARMENGOT
Affiliation:
Department of International Cooperation, Research Institute of Organic Agriculture (FiBL), Ackerstr. 113, 5070 Frick, Switzerland
MONIKA SCHNEIDER
Affiliation:
Department of International Cooperation, Research Institute of Organic Agriculture (FiBL), Ackerstr. 113, 5070 Frick, Switzerland
DANIELA SAUER
Affiliation:
Department of Physical Geography, Georg-August University, Goldschmidstr. 5, 37077 Göttingen, Germany
FELIX HEITKAMP
Affiliation:
Department of Physical Geography, Georg-August University, Goldschmidstr. 5, 37077 Göttingen, Germany
GERHARD GEROLD
Affiliation:
Department of Physical Geography, Georg-August University, Goldschmidstr. 5, 37077 Göttingen, Germany
*
§Corresponding author. Email: [email protected]

Summary

Agroforestry systems (AFS) can serve to decrease ecosystem carbon (C) losses caused by deforestation and inadequate soil management. Because of their shade tolerance, cacao plants are suitable to be grown in AFS, since they can be combined with other kinds of trees and shrubs. The potential for C sequestration in cacao farming systems depends on various factors, such as management practices, stand structure and plantation age. We compared conventionally and organically managed cacao monoculture systems (MCS) and AFS in Sara Ana (Bolivia) with respect to C stocks in plant biomass and to amounts of litterfall and pruning residues. The total aboveground C stocks of the AFS (26 Mg C ha−1) considerably exceeded those of the MCS (~7 Mg C ha−1), although the biomass of cacao trees was greater in the MCS compared to the AFS. Due to higher tree density, annual litterfall in the AFS (2.2 Mg C ha−1 year−1) substantially exceeded that in the MCS (1.2 Mg C ha−1 year−1). The amounts of C in pruning residues (2.6 Mg C ha−1 year−1 in MCS to 4.3 Mg C ha−1 year−1 in AFS) was more than twice those in the litterfall. Annual nitrogen (N) inputs to the soil through pruning residues of cacao and N-fixing trees were up to 10 times higher than the N inputs through external fertiliser application. We conclude that appropriate management of cacao AFS, involving the pruning of leguminous trees, will lead to increases in biomass, litter quantity and quality as well as soil C and N stocks. Thus, we recommend stimulating the expansion of well-managed AFS to improve soil fertility and enhance C sequestration in soils.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abou Rajab, Y., Leuschner, C., Barus, H., Tjoa, A. and Hertel, D. (2016). Cacao cultivation under diverse shade tree cover allows high carbon storage and sequestration without yield losses. PloS one 11:e0149949.Google Scholar
Albrecht, A. and Kandji, S. T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosystem & Environment 99:1527.Google Scholar
Andrade, H. J., Segura, M., Somarriba, E. and Villalobos, M. (2008). Valoración biofísica y financiera de la fijación de carbono por uso del suelo en fincas cacaoteras indigenas de Talamanca, Costa Rica. Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba (Costa Rica).Google Scholar
Armengot, L., Barbieri, P., Andres, C., Milz, J. and Schneider, M. (2016). Cacao agroforestry systems have higher return on labor compared to full-sun monocultures. Agronomy for Sustainable Development 36:70.Google Scholar
Bates, D., Mächler, M., Bolker, B. and Walker, S. (2015). Fitting linear mixedeffects models using lme4. Journal of Statistical Software 67:148.Google Scholar
Beer, J. (1988). Litter production and nutrient cycling in coffee (Coffea arabica) or cacao (Theobroma cacao) plantations with shade trees. Agroforestry Systems 7:103114.Google Scholar
Beer, J., Bonnemann, A., Chavez, W., Fassbender, H. W., Imbach, A. C. and Martel, I. (1990). Modelling agroforestry systems of cacao (Theobroma cacao) with laurel (Cordia alliodora) or poro (Erythrina poeppigiana) in Costa Rica. Agroforestry Systems 12:229249.Google Scholar
Beer, J., Muschler, R., Kass, D. and Somarriba, E. (1998). Shade management in coffee and cacao plantations. Agroforestry Systems 38:139164.Google Scholar
Cairns, M. A., Brown, S., Helmer, E. H. and Baumgardner, G. A. (1997). Root biomass allocation in the world's upland forests. Oecologia 111:111.Google Scholar
Dawoe, E. K., Isaac, M. E. and Quashie-Sam, J. (2010). Litterfall and litter nutrient dynamics under cocoa ecosystems in lowland humid Ghana. Plant and Soil 330:5564.Google Scholar
Daymond, A. J., Tricker, P. J. and Hadley, P. (2011). Genotypic variation in photosynthesis in cacao is correlated with stomatal conductance and leaf nitrogen. Biologia Plantarum 55:99104.Google Scholar
Elbers, J. (2002). Agrarkolonisation im Alto Beni. Landschafts-und politisch-ökologische Entwicklungsforschung in einem Kolonisationsgebiet in den Tropen Boliviens. PhD thesis, University of Düsseldorf.Google Scholar
Harris, N. L., Brown, S., Hagen, S. C., Saatchi, S. S., Petrova, S., Salas, W., Hansen, M. C., Potapov, P. V. and Lotsch, A. (2012). Baseline map of carbon emissions from deforestation in tropical regions. Science 336:15731576.Google Scholar
ICCO (International Cocoa Organization) (2017). QBCS, Vol. XLIII No. 2, Cocoa year 2016/17. Available online at https://www.icco.org/about-us/international-cocoa-agreements/doc_download/2582-production-qbcs-xliii-no-2.html (accessed 02.08.17).Google Scholar
IPCC (2014). Climate change 2014. Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 151 (Eds Core Writing Team, Pachauri, R. K. and Meyer, L. A.). Geneva, Switzerland: IPCC.Google Scholar
Isaac, M. E., Timmer, V. R. and Quashie-Sam, S. J. (2007). Shade tree effects in an 8-year-old cocoa agroforestry system: Biomass and nutrient diagnosis of Theobroma cacao by vector analysis. Nutrient cycling in agroecosystems 78:155165.Google Scholar
Jacobi, J., Andres, C., Schneider, M., Pillco, M., Calizaya, P. and Rist, S. (2014). Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia. Agroforestry Systems 88:11171132.Google Scholar
Johns, N. D. (1999). Conservation in Brazil's chocolate forest: The unlikely persistence of the traditional cocoa agroecosystem. Environmental Management 23:3147.Google Scholar
Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: An overview. Agroforestry Systems 76:110.Google Scholar
Kähkölä, A. K., Nygren, P., Leblanc, H. A., Pennanen, T. and Pietikäinen, J. (2012). Leaf and root litter of a legume tree as nitrogen sources for cacaos with different root colonisation by arbuscular mycorrhizae. Nutrient Cycling in Agroecosystems 92:5165.Google Scholar
Kilcher, L. (2007). How organic agriculture contributes to sustainable development. Journal of Agricultural Research in the Tropics and Subtropics, 89:3149.Google Scholar
Kuznetsova, A., Brockhoff, P. B. and Christensen, R. (2015). lmerTest: Tests in Linear Mixed Effects Models.Google Scholar
Lenth, R. V. and Hervé, M. (2015). Lsmeans: Least-squares means. R Package Version 2.18. Available online at http://CRAN.R-project.org/package=lsmeans.Google Scholar
Lernoud, J. and Willer, H. (2016). Current statistics on organic agriculture worldwide: Area, producers, markets, and selected crops. The World of Organic Agriculture Statistics and Emerging Trends 2016.Google Scholar
Lernoud, J., Willer, H. and Schlatter, B. (2016). Latin America and the caribbean: Current statistics. The World of Organic Agriculture Statistics and Emerging Trends 2016.Google Scholar
MacDicken, K. K., Wolf, G. V. and Briscoe, C. B. (eds.) (1991). Standard research methods for multipurpose trees and shrubs. Winrock International Institute for Agricultural Development, Arlington, Va. (EUA) International Council for Research in Agroforestry, Nairobi, Kenia.Google Scholar
Mortimer, R., Saj, S. and David, C. (2017) Supporting ecosystem services in cacao agroforestry systems. Agroforestry Systems 2017:119.Google Scholar
Nair, P. K. R., Kumar, B. M. and Nair, V. D. (2009). Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science 172:1023.Google Scholar
Nair, P. K. R., Viswanath, S. and Lubina, P. A. (2017). Cinderella agroforestry systems. Agroforestry Systems 91: 901917.Google Scholar
Norgrove, L. and Hauser, S. (2013) Carbon stocks in shaded Theobroma cacao farms and adjacent secondary forests of similar age in Cameroon. Tropical Ecology 54:1522.Google Scholar
Pearson, T., Walker, S. and Brown, S. (2005). Sourcebook for land use, land-use change and forestry projects. Winrock International and the BioCarbon Fund of the World Bank, 57.Google Scholar
Saj, S., Durot, C., Mvondo Sakouma, K., Tayo Gamo, K. and Avana-Tientcheu, M. L. (2017). Contribution of associated trees to long-term species conservation, carbon storage and sustainability: A functional analysis of tree communities in cacao plantations of Central Cameroon. International Journal of Agricultural Sustainability 15:282302.Google Scholar
Saj, S., Jagoret, P. and Ngogue, H. T. (2013). Carbon storage and density dynamics of associated trees in three contrasting Theobroma cacao agroforests of Central Cameroon. Agroforestry Systems 87:13091320.Google Scholar
Schneider, M., Andres, C., Trujillo, G., Alcon, F., Amurrio, P., Perez, E., Weibel, F. and Milz, J. (2016). Cocoa and total system yields of organic and conventional agroforestry vs. monoculture systems in a long-term field trial in Bolivia. Experimental Agriculture 53:351374.Google Scholar
Schroth, G., Lehmann, J., Rodrigues, M. R. L., Barros, E. and Macêdo, J. L. V. (2001). Plant-soil interactions in multistrata agroforestry in the humid tropicsa. Agroforestry Systems 53:85102.Google Scholar
Segura, M., Kanninen, M. and Suárez, D. (2006). Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agroforestry Systems 68:143150.Google Scholar
Seidel, R. and Vargas, E. (1994). Vegetacion de Alto Beni, Departamento La Paz. La Paz: Herbario Nacional de Bolivia.Google Scholar
Steffan-Dewenter, I., Kessler, M., Barkmann, J., Bos, M. M., Buchori, D., Erasmi, S., Faust, H., Gerold, G., Glenk, K., Gradstein, S. R., Guhardja, E., Harteveld, M., Hertel, D., Höhn, P., Kappas, M., Köhler, S., Leuschner, C., Maertens, M., Marggraf, R., Migge-Kleian, S., Mogea, J., Pitopang, R., Schaefer, M., Schwarze, S., Sporn, S. G., Steingrebe, A., Tjitrosoedirdjo, S.S., Tjitrosoemito, S., Twele, A., Weber, R., Woltmann, L., Zeller, M. and Tscharntke, T. (2007). Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proceedings of the National Academy of Sciences 104:49734978.Google Scholar
Triadiati, Tjitrosemito, S., Guhardja, E., Qayim, I. and Leuschner, C. (2007). Nitrogen resorption and nitrogen use efficiency in cacao agroforestry systems managed differently in Central Sulawesi. HAYATI Journal of Biosciences 14:127132.Google Scholar
Tscharntke, T., Clough, Y., Bhagwat, S. A., Buchori, D., Faust, H., Hertel, D., Hölscher, D., Juhrbandt, J., Kessler, M., Perfecto, I., Scherber, C., Schroth, G., Verldkamp, E. and Wanger, T.C. (2011). Multifunctional shade‐tree management in tropical agroforestry landscapes–A review. Journal of Applied Ecology 48:619629.Google Scholar
van der Werf, G. R., Morton, D. C., DeFries, R. S., Olivier, J. G. J., Kasibhatla, P. S., Jackson, R. B., Collatz, G. J. and Randerson, J. T. (2009). CO2 emissions from forest loss. Nature Geoscience 2:737738.Google Scholar
van Noordwijk, M., Rahayu, S., Hairiah, K., Wulan, Y.C., Farida, A. and Verbist, B. (2002). Carbon stock assessment for a forest-to-coffee conversion landscape in Sumber-Jaya (Lampung, Indonesia): From allometric equations to land use change analysis. Science in China series C life sciences-english 45:7586.Google Scholar
WCF (World Cocoa Foundation) Summary Reports (2014). Cocoa market update. Compiled by the world cocoa foundation from published reports and resources. World Cocoa Foundation. Available online at http://worldcocoafoundation.org/about-cocoa/cocoa-market-statistics/21.10.2016.Google Scholar
Webster, R. (2001). Statistics to support soil research and their presentation. European Journal of Soil Science 52:331340.Google Scholar
Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag.Google Scholar
Wood, G. A. R. and Lass, R. A. (1985). Cocoa, 4th edn. NewYork: Longman Inc.Google Scholar
Yaffar, D. (2014). Producción primaria neta en un bosque tropical - Sara Ana Bolivia. Tesis de Licenciatura, Universidad Mayor de San Andrés.Google Scholar
Yan, F., Schubert, S. and Mengel, K. (1996). Soil pH changes during legume growth and application of plant material. Biology and Fertility of Soils 23:236242.Google Scholar
Zuidema, P. A., Leffelaar, P. A., Gerritsma, W., Mommer, L. and Anten, N. P. (2005). A physiological production model for cocoa (Theobroma cacao): Model presentation, validation and application. Agricultural Systems 84:195225.Google Scholar
Supplementary material: File

Schneidewind et al. supplementary material

Schneidewind et al. supplementary material 1

Download Schneidewind et al. supplementary material(File)
File 11.6 KB
Supplementary material: Image

Schneidewind et al. supplementary material

Schneidewind et al. supplementary material 2

Download Schneidewind et al. supplementary material(Image)
Image 2.9 MB