Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T10:27:21.090Z Has data issue: false hasContentIssue false

AGRO-ECOSYSTEM SERVICES ASSESSMENT OF SILVOPASTORAL EXPERIENCES IN CHIAPAS, MEXICO: TOWARDS A METHODOLOGICAL PROPOSAL

Published online by Cambridge University Press:  17 November 2017

ELENI MARINIDOU*
Affiliation:
El Colegio de la Frontera Sur (ECOSUR), Carretera Panamericana y Periférico Sur s/n, Barrio María Auxiliadora, San Cristóbal de Las Casas, Chiapas 29290, México
GUILLERMO JIMÉNEZ-FERRER
Affiliation:
El Colegio de la Frontera Sur (ECOSUR), Carretera Panamericana y Periférico Sur s/n, Barrio María Auxiliadora, San Cristóbal de Las Casas, Chiapas 29290, México
LORENA SOTO-PINTO
Affiliation:
El Colegio de la Frontera Sur (ECOSUR), Carretera Panamericana y Periférico Sur s/n, Barrio María Auxiliadora, San Cristóbal de Las Casas, Chiapas 29290, México
BRUCE G. FERGUSON
Affiliation:
El Colegio de la Frontera Sur (ECOSUR), Carretera Panamericana y Periférico Sur s/n, Barrio María Auxiliadora, San Cristóbal de Las Casas, Chiapas 29290, México
ANTONIO SALDÍVAR-MORENO
Affiliation:
El Colegio de la Frontera Sur (ECOSUR), Carretera Panamericana y Periférico Sur s/n, Barrio María Auxiliadora, San Cristóbal de Las Casas, Chiapas 29290, México
*
Corresponding author. Email: [email protected]

Summary

In response to the current needs of humanity with regard to food production, environmental disasters and climate change, it is important to define (livestock) production systems and management practices that are both productive and ecologically sustainable. We qualitatively assessed advanced silvopastoral experiences in five ecologically and culturally distinct regions in Chiapas, Mexico, given their ability to provide key services: internal (productivity and productive resiliency) and external (climate change mitigation and biodiversity conservation). We propose 20 indicators that reflect management, resources, use of external inputs, availability of food, commercial products and animal feed and trees in grazing and forest areas. Sets of some indicators form criteria for dependence on external inputs, productive diversification with emphasis on food security, soil conservation, tree cover and landscape connectivity, among others. Indicators and thresholds were adjusted to critical (traffic light) levels, based on field data. Comparing the levels reached by the studied experiences, we found that most of the resulting services go hand in hand; so ‘win–win’ situations are possible to be achieved. The elements and practices that affect both internal and external services were explored. The red light critical points in each production unit were identified so that they could be attended. Experiences that presented higher levels in assessment criteria could serve as examples to enable the improvement of livestock systems under similar conditions. We propose this assessment as a tool for rapid intervention that can be widely applied to livestock systems, from conventional to organic or diversified, because of the criteria used. However, it can be more flexible, as new criteria can be added and thresholds can be adjusted for other types of production systems, always reflecting local and desired conditions. The proposed indicators can be also used as a basis for a quantitative agroecosystem assessment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albores-Moreno, S., Alayón-Gamboa, J. A., Ayala-Burgos, A. J., Solorio-Sánchez, F. J., Aguilar-Pérez, C. F., Olivera-Castillo, L. and Ku-Vera, J. C. (2017). Effects of feeding ground pods of Enterolobium cyclocarpum Jacq. Griseb on dry matter intake, rumen fermentation, and enteric methane production by Pelibuey sheep fed tropical grass. Tropical Animal Health and Production 49 (4):857866.Google Scholar
Amy, J. and Robertson, A. I. (2001). Relationships between livestock management and the ecological condition of riparian habitats along an Australian floodplain river. Journal of Applied Ecology 38 (1):6375.Google Scholar
Atkinson, R. and Flint, J. (2001). Accessing hidden and hard-to-reach populations: Snowball research strategies. Social Research Update 33 (1):14.Google Scholar
Bennet, A. F. (1998). Linkages in the Landscape: The Role of Corridors and Connectivity in Wildlife Conservation. Gland, Switzerland, Cambridge: IUCN.Google Scholar
Bodin, Ö., Tengö, M., Norman, A., Lundberg, J. and Elmqvist, T. (2006). The value of small size: Loss of forest patches and ecological thresholds in southern Madagascar. Ecological Applications 16 (2):440451.Google Scholar
Calle, Z., Murgueitio, E. and Chara, J. (2012). Integrating forestry, sustainable cattle-ranching and landscape restoration. Unasylva 63 (1):3140.Google Scholar
Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P. and Kinzig, A. P. (2012). Biodiversity loss and its impact on humanity. Nature 486 (7401):5967.Google Scholar
Congdon, B. and Addison, H. (2003). Optimising Nutrition for Productive and Sustainable Farm Forestry Systems: Pasture Legumes Under Shade. Kingston, Australia: Rural and Industries Research Development Corporation.Google Scholar
Cortez-Arriola, J., Groot, J. C., Rossing, W. A., Scholberg, J. M., Massiotti, R. D. A. and Tittonell, P. (2016). Alternative options for sustainable intensification of smallholder dairy farms in North-West Michoacán, Mexico. Agricultural Systems 144:2232.Google Scholar
De Alba, J. and Kennedy, B. W. (1985). Milk production in the Latin-American milking Criollo and its crosses with the Jersey. Animal Production 41:143150.Google Scholar
Esquivel, M. H. (2007). Tree resources in traditional silvopastoral systems and their impact on productivity and nutritive value of pastures in the dry tropics of Costa Rica (Doctoral Thesis). Costa Rica: University of CATIE.Google Scholar
FAO. (2010). Grassland carbon sequestration: Management, policy and economics. In Integrated Crop Management, 11. (Eds. Abberton, M., Conant, R. and Batello, C.). Rome, Italy.Google Scholar
FAO. (2013). Forests and trees outside forests are essential for global food security and nutrition. Summary of the International Conference on Forests for Food Security and Nutrition. Rome, Italy.Google Scholar
Ferguson, B. G., Diemont, S., Alfaro-Argüelles, R., Martinc, J., Nahed-Toral, J., Álvarez-Solís, D. and Pinto-Ruiz, R. (2013). Sustainability of holistic and conventional cattle ranching in the seasonally dry tropics of Chiapas, Mexico. Agricultural Systems (120):3848.Google Scholar
Fischer, J., Stott, J., Zerger, A., Warren, G., Sherren, K. and Forrester, R. I. (2009). Reversing a tree regeneration crisis in an endangered ecoregion. Proceedings of the National Academy of Sciences, 106 (25):1038610391.Google Scholar
Harvey, C. A., Medina, A., Merlo, S. D., Vílchez, S., Hernández, B., Sáenz, J. C., Maes, J. M., Casanoves, F. and Sinclair, F. L. (2006). Patterns of animal diversity in different forms of tree cover in agricultural landscapes. Ecological Society of America. Ecological Applications 16 (5):19861999.Google Scholar
Herrero, M., Henderson, B., Havlík, P., Thornton, P. K., Conant, R. T., Smith, P. and Butterbach-Bahl, K. (2016). Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change 6:452461.Google Scholar
Herrero, M., Thornton, P. K., Gerber, P. and Reid, R. S. (2009). Livestock, livelihoods and the environment: Understanding the trade-offs. Current Opinion in Environmental Sustainability 1 (2):111120.Google Scholar
Ibrahim, M., Sepúlveda, C., Tobar, D., Ríos, N., Guerra, L., Casasola, F. and Vega, A. (2013). Balance de Gases de Efecto de Invernadero en Los Sistemas Ganaderos de Doble Propósito en La Región Chorotega.Google Scholar
INE (1999). Programa de Manejo. Reserva de la Biosfera La Sepultura. Available at: http://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/sepultura.pdf. Accessed 19 February 2016.Google Scholar
INE (Instituto Nacional de Ecología) (2000). Programa de Manejo Reserva de la Biosfera Montes Azules. Available at: http://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/montes_azules.pdf. Accessed 19 February 2016.Google Scholar
INEGI. (2016). Anuario estadístico y geográfico de Chiapas 2016. México: Instituto Nacional de Estadística y Geografía.Google Scholar
Jiménez-Ferrer, G. Aguilar, A. V. and Soto-Pinto, L. (2008). Livestock and carbon sequestration in the lacandon rainforest, Chiapas, Mexico. In Proceedings of the International Conference Livestock and Global Climate Change, 195197. (Eds. Rowlinson, P. et al). Hammamet, Tunisia: Cambridge University Press.Google Scholar
Koohafkan, P., Altieri, M. A. and Gimenez, E. H. (2011). Green agriculture: Foundations for biodiverse, resilient and productive agricultural systems. International Journal of Agricultural Sustainability 10 (1):6175.Google Scholar
Lin, B. B., Chappell, J., Vandermeer, J., Smith, G., Quintero, E., Bezner-Kerr, R., Griffith, D. M., Ketcham, S., Latta, S. C., McMichael, P., McGuire, K., Nigh, R., Rocheleau, D., Soluri, J. and Perfecto, I. (2011). Effects of industrial agriculture on climate change and the mitigation potential of small-scale agro-ecological farms. In Animal Science Reviews 2011, 69–86 (Ed Hemming, D.). UK: CAB International.Google Scholar
McIntyre, S. and Hobbs, R. (1999). A framework for conceptualizing human effects on landscapes and its relevance to management and research models. Conservation Biology 13 (6):12821292.Google Scholar
McIvor, J. G., Williams, J. and Gardener, C. J. (1995). Pasture management influences runoff and soil movement in the semi-arid tropics. Animal Production Science 35 (1):5565.Google Scholar
Morales, C., Vázquez, J. T., Barrios, L. J. G., Rodríguez, L. E. R. and Trujillo, J. M. J. (2011). Buenas Prácticas Para la Ganadería Sustentable en la Reserva de la Biosfera La Sepultura, Chiapas, México. Mexico: Universidad Autónoma Chapingo.Google Scholar
Murgueitio, E., Calle, Z., Uribe, F., Calle, A. and Solorio, B. (2011). Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. Forest Ecology & Management 261:16541663.Google Scholar
Naylor, R. L. (2009). Managing food production systems for resilience. In Principles of Ecosystem Stewardship, 259280 (Eds Chapin, F. S., Kofinas, G. P. and Folke, C.). New York: Springer.Google Scholar
Nicholls, C. I. and Altieri, M. A. (2013). Agroecología y cambio climático.-Metodologías para evaluar la resiliencia socio-ecológica en comunidades rurales. Lima, Peru: REDAGRES.Google Scholar
Niggli, U., Fließbach, A., Hepperly, P. and Scialabba, N. (2009). Low greenhouse gas agriculture: Mitigation and adaptation potential of sustainable farming systems. Ökologie & Landbau 141:3233.Google Scholar
Oertli, B., Joye, D.A., Castella, E., Juge, R., Cambin, D. and Lachavanne, J.B. (2002). Does size matter? The relationship between pond area and biodiversity. Biological Conservation 104 (1), 5970.Google Scholar
Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E. and Montanarella, L. (2015). Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 48:3850.Google Scholar
Pimentel, D. and Kounang, N. (1998). Ecology of soil erosion in ecosystems. Ecosystems 1 (5):416426.Google Scholar
Piñeiro-Vázquez, A. T., Jiménez-Ferrer, G. J., Chay-Canul, A., Casanova-Lugo, F., Díaz-Echeverría, V., Ayala-Burgos, A., Solorio-Sánchez, F., Aguilar-Pérez, C. and Ku-Vera, J. (2017). Intake, digestibility, nitrogen balance and energy utilization in heifers fed low-quality forage and Leucaena leucocephala. Animal Feed Science and Technology 228:194201.Google Scholar
Poveda, K., Gómez, M. I. and Martínez, E. (2008). Diversification practices: Their effect on pest regulation and production. Revista Colombiana de Entomología 34 (2):131144.Google Scholar
Ríos, N., Cárdenas, A., Andrade, H., Ibrahim, M., Jiménez, F., Sancho, F. and Woo, A. (2007). Estimación de la escorrentía superficial e infiltración en sistemas de ganadería convencional y en sistemas silvopastoriles en el trópico subhúmedo de Nicaragua y Costa Rica. Agroforestería en las Américas 45:6671.Google Scholar
Schulze, C. H., Waltert, M., Kessler, P. J., Pitopang, R., Veddeler, D., Mühlenberg, M. and Tscharntke, T. (2004). Biodiversity indicator groups of tropical land-use systems: Comparing plants, birds, and insects. Ecological Applications 14 (5):13211333.Google Scholar
Sekhotha, M. M., Monyeki, K. D. and Sibuyi, M. E. (2016). Exposure to agrochemicals and cardiovascular disease: A review. International Journal of Environmental Research and Public Health 13 (2):229.Google Scholar
Solorio, S. F. J., Wright, J., Franco, M. J. A., Basu, S. K., Sarabia, S. L., Ramírez, L. and Ku-Vera, J. C. (2017). Silvopastoral systems: Best agroecological practice for resilient production systems under dryland and drought conditions. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability, 233250 (Eds Ahmed, M. and Stockle, C. O.). Switzerland: Springer International Publishing.Google Scholar
Soto-Pinto, L., Anzueto, M. M., Martínez-Zurimendi, P. and Jiménez-Ferrer, G. (2017). Tree quality in agroforestry systems managed by small-scale mayan farmers in chiapas, Mexico. Small-scale Forestry 16:103118.Google Scholar
Soto-Pinto, L., Anzueto, M., Mendoza, J., Jiménez-Ferrer, G. and De Jong, B. (2010). Carbon sequestration through agroforestry in indigenous. Agroforestry Systems 78:3951.Google Scholar
Uetake, K. (2013). Newborn calf welfare: A review focusing on mortality rates. Animal Science Journal 84 (2):101105.Google Scholar
Waithaka, M. M., Thornton, P. K., Herrero, M. and Shepherd, K. D. (2006). Bio-economic evaluation of farmers’ perceptions of viable farms in western Kenya. Agricultural Systems 90 (1):243271.Google Scholar
Wimalawansa, S. A. and Wimalawansa, S. J. (2014). Agrochemical-related environmental pollution: Effects on human health. Global Journal of Biology, Agriculture and Health Sciences 3 (3):7283.Google Scholar
Supplementary material: Image

Marinidou et al supplementary material

Figure S1

Download Marinidou et al supplementary material(Image)
Image 9.9 MB