Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Ellis, R. H.
Lawn, R. J.
Summerfield, R. J.
Qi, A.
Roberts, E. H.
Chay, P. M.
Brouwer, J. B.
Rose, J. L.
Yeates, S. J.
and
Sandover, S.
1994.
Towards the Reliable Prediction of Time to Flowering in Six Annual Crops. V. Chickpea (Cicer arietinum).
Experimental Agriculture,
Vol. 30,
Issue. 3,
p.
271.
Linnemann, Anita R.
Westphal, Egbert
and
Wessel, Marius
1995.
Photoperiod regulation of development and growth in bambara groundnut (Vigna subterranea).
Field Crops Research,
Vol. 40,
Issue. 1,
p.
39.
Lawn, R. J.
Summerfield, R. J.
Ellis, R. H.
Qi, A.
Roberts, E. H.
Chay, P. M.
Brouwer, J. B.
Rose, J. L.
and
Yeates, S. J.
1995.
Towards the Reliable Prediction of Time to Flowering in Six Annual Crops. VI. Applications in Crop Improvement.
Experimental Agriculture,
Vol. 31,
Issue. 1,
p.
89.
Omanga, P.A.
Summerfield, R.J.
and
Qi, A.
1995.
Flowering of pigeonpea (Cajanus cajan) in Kenya: Responses of early-maturing genotypes to location and date of sowing.
Field Crops Research,
Vol. 41,
Issue. 1,
p.
25.
Roberts, E. H.
Qi, A.
Ellis, R. H.
Summerfield, R. J.
Lawn, R. J.
and
Shanmugasundaram, S.
1996.
Use of field observations to characterise genotypic flowering responses to photoperiod and temperature: a soyabean exemplar.
Theoretical and Applied Genetics,
Vol. 93,
Issue. 4,
p.
519.
Omanga, P. A.
Summerfield, R. J.
and
Qi, A.
1996.
Flowering in Pigeonpea (Cajanus cajan) in Kenya: Responses of Medium- and Late-maturing Genotypes to Location and Date of Sowing.
Experimental Agriculture,
Vol. 32,
Issue. 2,
p.
111.
Brink, M
Sibuga, K.P
Tarimo, A.J.P
and
Ramolemana, G.M
2000.
Quantifying photothermal influences on reproductive development in bambara groundnut (Vigna subterranea): models and their validation.
Field Crops Research,
Vol. 66,
Issue. 1,
p.
1.
Silim, S.N
and
Omanga, P.A
2001.
The response of short-duration pigeonpea lines to variation in temperature under field conditions in Kenya.
Field Crops Research,
Vol. 72,
Issue. 2,
p.
97.
Rebetzke, G. J.
and
Lawn, R. J.
2006.
Adaptive responses of wild mungbean (Vigna radiata ssp. sublobata) to photo-thermal environment. I. Phenology.
Australian Journal of Agricultural Research,
Vol. 57,
Issue. 8,
p.
917.
Rachaputi, Rao C.N.
Chauhan, Yashvir
Douglas, Col
Martin, William
Krosch, Stephen
Agius, Peter
and
King, Kristopher
2015.
Physiological basis of yield variation in response to row spacing and plant density of mungbean grown in subtropical environments.
Field Crops Research,
Vol. 183,
Issue. ,
p.
14.
Malaviarachchi, M. A. P. W. K.
De Costa, W. A. J. M.
Kumara, J. B. D. A. P.
Suriyagoda, L. D. B.
and
Fonseka, R. M.
2016.
Response of Mung Bean (Vigna radiata (L.) R. Wilczek) to an Increasing Natural Temperature Gradient under Different Crop Management Systems.
Journal of Agronomy and Crop Science,
Vol. 202,
Issue. 1,
p.
51.
Chauhan, Yashvir S.
and
Williams, Rex
2018.
Physiological and Agronomic Strategies to Increase Mungbean Yield in Climatically Variable Environments of Northern Australia.
Agronomy,
Vol. 8,
Issue. 6,
p.
83.
Kozlov, Konstantin
Sokolkova, Alena
Lee, Cheng-Ruei
Ting, Chau-Ti
Schafleitner, Roland
Bishop-von Wettberg, Eric
Nuzhdin, Sergey
and
Samsonova, Maria
2020.
Dynamical climatic model for time to flowering in Vigna radiata.
BMC Plant Biology,
Vol. 20,
Issue. S1,
Wright, Derek M.
Neupane, Sandesh
Heidecker, Taryn
Haile, Teketel A.
Chan, Crystal
Coyne, Clarice J.
McGee, Rebecca J.
Udupa, Sripada
Henkrar, Fatima
Barilli, Eleonora
Rubiales, Diego
Gioia, Tania
Logozzo, Giuseppina
Marzario, Stefania
Mehra, Reena
Sarker, Ashutosh
Dhakal, Rajeev
Anwar, Babul
Sarkar, Debashish
Vandenberg, Albert
and
Bett, Kirstin E.
2021.
Understanding photothermal interactions will help expand production range and increase genetic diversity of lentil (Lens culinarisMedik.).
PLANTS, PEOPLE, PLANET,
Vol. 3,
Issue. 2,
p.
171.
Ageev, Andrey
Lee, Cheng-Ruei
Ting, Chau-Ti
Schafleitner, Roland
Bishop-von Wettberg, Eric
Nuzhdin, Sergey V.
Samsonova, Maria
and
Kozlov, Konstantin
2021.
Modeling of Flowering Time in Vigna radiata with Approximate Bayesian Computation.
Agronomy,
Vol. 11,
Issue. 11,
p.
2317.
Geetika, Geetika
Collins, Marisa
Singh, Vijaya
Hammer, Graeme
Mellor, Vincent
Smith, Millicent
Rachaputi, Rao C. N.
and
Denton, Matthew
2022.
Canopy and reproductive development in mungbean (.
Crop & Pasture Science,
Vol. 73,
Issue. 10,
p.
1142.
Geetika, Geetika
Hammer, Graeme
Smith, Millicent
Singh, Vijaya
Collins, Marisa
Mellor, Vincent
Wenham, Kylie
and
Rachaputi, Rao C.N.
2022.
Quantifying physiological determinants of potential yield in mungbean (Vigna radiata (L.) Wilczek).
Field Crops Research,
Vol. 287,
Issue. ,
p.
108648.
Bavykina, Maria
Kostina, Nadezhda
Lee, Cheng-Ruei
Schafleitner, Roland
Bishop-von Wettberg, Eric
Nuzhdin, Sergey V.
Samsonova, Maria
Gursky, Vitaly
and
Kozlov, Konstantin
2022.
Modeling of Flowering Time in Vigna radiata with Artificial Image Objects, Convolutional Neural Network and Random Forest.
Plants,
Vol. 11,
Issue. 23,
p.
3327.
Neupane, Sandesh
Wright, Derek M.
Martinez, Raul O.
Butler, Jakob
Weller, James L.
and
Bett, Kirstin E.
2023.
Focusing the GWAS Lens on days to flower using latent variable phenotypes derived from global multienvironment trials.
The Plant Genome,
Vol. 16,
Issue. 1,
Van Haeften, Shanice
Kang, Yichen
Dudley, Caitlin
Potgieter, Andries
Robinson, Hannah
Dinglasan, Eric
Wenham, Kylie
Noble, Thomas
Kelly, Lisa
Douglas, Colin A
Hickey, Lee
Smith, Millicent R
and
Buckley, Tom
2024.
Fusarium wilt constrains mungbean yield due to reduction in source availability.
AoB PLANTS,
Vol. 16,
Issue. 2,