Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T16:30:35.271Z Has data issue: false hasContentIssue false

A critical review on applications of hyperspectral remote sensing in crop monitoring

Published online by Cambridge University Press:  25 July 2022

Huan Yu*
Affiliation:
College of Earth Sciences, Chengdu University of Technology, 610059, Chengdu, China
Bo Kong
Affiliation:
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041, Chengdu, China
Yuting Hou
Affiliation:
College of Earth Sciences, Chengdu University of Technology, 610059, Chengdu, China
Xiaoyu Xu
Affiliation:
Department of Geography and Environmental Resources, Southern Illinois University Carbondale, Carbondale, IL 62901, USA Environmental Resources and Policy, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
Tao Chen
Affiliation:
College of Earth Sciences, Chengdu University of Technology, 610059, Chengdu, China
Xiangmeng Liu
Affiliation:
College of Earth Sciences, Chengdu University of Technology, 610059, Chengdu, China
*
*Corresponding author. Email: [email protected]

Summary

Numerous technologies have contributed to the recent development of agriculture, especially the advancement in hyperspectral remote sensing (HRS) constituted a revolution in crop monitoring. The widespread use of HRS to obtain crop parameters suggests the need for a review of research advances in this area. HRS offers new theories and methods for studying crop parameters, but much work needs to be done both experimentally and theoretically before we can truly understand the physical and chemical processes that predict these crop parameters. The study focuses on the following elements: 1) The article provides a relatively comprehensive introduction to HRS and how it can be applied to crop monitoring; 2) Current state-of-the-art techniques are summarized and analyzed to inform further advances in crop monitoring; 3) Opportunities and challenges for crop monitoring applications using HRS are discussed, and future research is summarized. Finally, through a comprehensive discussion and analysis, the article proposes new directions for using HRS to study crop characteristics, such as new data mining techniques including deep learning provide opportunities for efficient processing of large amounts of HRS data; combining the temporal and dynamic characteristics of crop parameters and vegetation growth processes will greatly improve the accuracy of crop parameter detection and monitoring; multidata fusion and multiscale data assimilation will become HRS monitoring. Multidata fusion and multiscale data assimilation will become another research hotspot for HRS monitoring of crop parameters.

Type
Review
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afrasiabian, Y., Noory, H., Mokhtari, A., Nikoo, M.R., Pourshakouri, F. and Haghighatmehr, P. (2021). Effects of spatial, temporal, and spectral resolutions on the estimation of wheat and barley leaf area index using multi- and hyper-spectral data (case study: Karaj, Iran). Precision Agriculture 22, 660688. https://doi.org/10.1007/s11119-020-09749-9 CrossRefGoogle Scholar
Aneece, I.P., Epstein, H. and Lerdau, M. (2017). Correlating species and spectral diversities using hyperspectral remote sensing in early-successional fields. Ecology & Evolution 7, 34753488. https://doi.org/10.1002/ece3.2876 CrossRefGoogle ScholarPubMed
Ang, L.M. and Seng, J. (2021). Big data and machine learning with hyperspectral information in agriculture. IEEE Access PP, 11. https://doi.org/10.1109/ACCESS.2021.3051196 Google Scholar
Astor, T., Dayananda, S., Nautiyal, S. and Wachendorf, M. (2020). Vegetable crop biomass estimation using hyperspectral and RGB 3D UAV data. Agronomy-Basel 10. https://doi.org/10.3390/agronomy10101600 Google Scholar
Bajwa, S.G. and Tian, L.F. (2005). Soil fertility characterization in agricultural fields using hyperspectral remote sensing. Transactions of the Asae 48, 23992406. https://doi.org/10.13031/2013.20079 CrossRefGoogle Scholar
Berger, K., Verrelst, J., Feret, J.-B., Wang, Z., Wocher, M., Strathmann, M. and Hank, T. (2020). Crop nitrogen monitoring: recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sensing of Environment 242. https://doi.org/10.1016/j.rse.2020.111758 CrossRefGoogle Scholar
Borzuchowski, J. and Schulz, K. (2010). Retrieval of leaf area index (LAI) and soil water content (WC) using hyperspectral remote sensing under controlled glass house conditions for spring barley and sugar beet. Remote Sensing 2, 17021721. https://doi.org/10.3390/rs2071702 CrossRefGoogle Scholar
Boschetti, M., Brivio, P.A., Carnesale, D. and Di Guardo, A. (2006). The contribution of hyperspectral remote sensing to identify vegetation characteristics necessary to assess the fate of Persistent Organic Pollutants (POPs) in the environment. Annals of Geophysics 49, 177186. https://doi.org/10.4401/ag-3167 Google Scholar
Casa, R., Castaldi, F., Pascucci, S., Palombo, A. and Pignatti, S. (2013). A comparison of sensor resolution and calibration strategies for soil texture estimation from hyperspectral remote sensing. Geoderma 197–198, 1726. https://doi.org/10.1016/j.geoderma.2012.12.016 CrossRefGoogle Scholar
Chattaraj, S., Chakraborty, D., Garg, R.N., Singh, G.P., Gupta, V.K., Singh, S. and Singh, R. (2013). Hyperspectral remote sensing for growth-stage-specific water uses in wheat. Field Crops Research 144, 179191. https://doi.org/10.1016/j.fcr.2012.12.009 CrossRefGoogle Scholar
Chi, J. and Crawford, M.M. (2014). Spectral unmixing-based crop residue estimation using hyperspectral remote sensing data: a case study at Purdue University. IEEE Journal of Selected Topicsin Applied Earth Observations and Remote Sensing 7, 25312539. https://doi.org/10.1109/JSTARS.2014.2319585 CrossRefGoogle Scholar
Chou, S., Chen, J.M., Yu, H., Chen, B., Zhang, X.Y., Croft, H., Khalid, S., Li, M. and Shi, Q. (2017). Canopy-level photochemical reflectance index from hyperspectral remote sensing and leaf-level non-photochemical quenching as early indicators of water stress in maize. Remote Sensing 9, 794. https://doi.org/10.3390/rs9080794 CrossRefGoogle Scholar
Dobrota, C.T., Carpa, R. and Butiuc-Keul, A. (2021). Analysis of designs used in monitoring crop growth based on remote sensing methods. Turkish Journal of Agriculture and Forestry 45, 730742. https://doi.org/10.3906/tar-2012-79 CrossRefGoogle Scholar
Elsayed, S. and Darwish, W. (2017). Hyperspectral remote sensing to assess the water status, biomass, and yield of maize cultivars under salinity and water stress. Bragantia 76, 6272. https://doi.org/10.1590/1678-4499.018 CrossRefGoogle Scholar
Fahey, T., Hai, P., Gardi, A., Sabatini, R. and Lamb, D.W. (2020). Active and passive electro-optical sensors for health assessment in food crops. Sensors 21, 171. https://doi.org/10.3390/s21010171 CrossRefGoogle ScholarPubMed
Feng, W., Yao, X., Tian, Y., Cao, W. and Zhu, Y. (2008). Monitoring leaf pigment status with hyperspectral remote sensing in wheat. Australian Journal of Agricultural Research 59, 748760. https://doi.org/10.1071/AR07282 CrossRefGoogle Scholar
Flynn, K.C., Frazier, A.E. and Admas, S. (2020). Nutrient prediction for Tef (Eragrostis tef) plant and grain with hyperspectral data and partial least squares regression: Replicating methods and results across environments. Remote Sensing 12. https://doi.org/10.3390/rs12182867 CrossRefGoogle Scholar
Gao, J., Meng, B., Liang, T., Feng, Q., Ge, J., Yin, J., Wu, C., Cui, X., Hou, M., Liu, J. and Xie, H. (2019). Modeling alpine grassland forage phosphorus based on hyperspectral remote sensing and a multi-factor machine learning algorithm in the east of Tibetan Plateau, China. ISPRS Journal of Photogrammetry and Remote Sensing 147, 104117. https://doi.org/10.1016/j.isprsjprs.2018.11.015 CrossRefGoogle Scholar
Gil-Perez, B., Zarco-Tejada, P.J., Correa-Guimaraes, A., Relea-Gangas, E., Navas-Gracia, L.M., Hernandez-Navarro, S., Sanz-Requena, J.F., Berjon, A. and Martin-Gil, J. (2010). Remote sensing detection of nutrient uptake in vineyards using narrow-band hyperspectral imagery. Vitis 49, 167173. https://doi.org/10.1007/s00122-009-1210-3 Google Scholar
Goel, P.K., Prasher, S.O., Landry, J.A., Patel, R.M., Bonnell, R.B., Viau, A.A. and Miller, J.A. (2003). Potential of airborne hyperspectral remote sensing to detect nitrogen deficiency and weed infestation in corn. Computers and Electronics in Agriculture 38, 99124. https://doi.org/0.1016/S0168-1699(02)00138-2 CrossRefGoogle Scholar
Goetz, A.F.H. (2009). Three decades of hyperspectral remote sensing of the Earth: a personal view. Remote Sensing of Environment 113 (Suppl. 1), S5S16. https://doi.org/10.1016/j.rse.2007.12.014 CrossRefGoogle Scholar
Gomez, C., Rossel, R.A.V. and McBratney, A.B. (2008). Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study. Geoderma 146, 403411. https://doi.org/10.1016/j.geoderma.2008.06.011 CrossRefGoogle Scholar
Govender, M., Chetty, K., Naiken, V. and Bulcock, H. (2008). A comparison of satellite hyperspectral and multispectral remote sensing imagery for improved classification and mapping of vegetation. Water SA 34, 147154. https://doi.org/10.4314/wsa.v34i2.183634 CrossRefGoogle Scholar
Grisham, M.P., Johnson, R.M. and Zimba, P.V. (2010). Detecting Sugarcane yellow leaf virus infection in asymptomatic leaves with hyperspectral remote sensing and associated leaf pigment changes. Journal of Virological Methods 167, 140145. https://doi.org/10.1016/j.jviromet.2010.03.024 CrossRefGoogle ScholarPubMed
Guo, R., Zhao, M.Z., Yang, Z.X., Wang, G.J., Yin, H. and Li, J.D. (2017). Simulation of soybean canopy nutrient contents by hyperspectral remote sensing. Applied Ecology and Environmental Research 15, 11851198. https://doi.org/10.15666/aeer/1504_11851198 CrossRefGoogle Scholar
He, L., Song, X., Feng, W., Guo, B.B., Zhang, Y.S., Wang, Y.H., Wang, C.Y. and Guo, T.C. (2016a). Improved remote sensing of leaf nitrogen concentration in winter wheat using multi-angular hyperspectral data. Remote Sensing of Environment 174, 122133. https://doi.org/10.1016/j.rse.2015.12.007 CrossRefGoogle Scholar
He, L., Zhang, H.Y., Zhang, Y.S., Song, X., Feng, W., Kang, G.Z., Wang, C.Y. and Guo, T.C. (2016b). Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. European Journal of Agronomy 73, 170185. https://doi.org/10.1016/j.eja.2015.11.017 CrossRefGoogle Scholar
He, R.Y., Li, H., Qiao, X.J. and Jiang, J.B. (2018). Using wavelet analysis of hyperspectral remote sensing data to estimate canopy chlorophyll content of winter wheat under stripe rust stress. International Journal of Remote Sensing 39, 40594076. https://doi.org/10.1080/01431161.2018.1454620 CrossRefGoogle Scholar
Hong, G. and Abd El-Hamid, H.T. (2020). Hyperspectral imaging using multivariate analysis for simulation and prediction of agricultural crops in Ningxia, China. Computers and Electronics in Agriculture 172. https://doi.org/10.1016/j.compag.2020.105355 CrossRefGoogle Scholar
Huang, Y.B., Lee, M.A., Thomson, S.J. and Reddy, K.N. (2016). Ground-based hyperspectral remote sensing for weed management in crop production. International Journal of Agricultural and Biological Engineering 9, 98109. https://doi.org/10.3965/j.ijabe.20160902.2137 Google Scholar
Inoue, Y., Guerif, M., Baret, F., Skidmore, A., Gitelson, A., Schlerf, M., Darvishzadeh, R. and Olioso, A. (2016). Simple and robust methods for remote sensing of canopy chlorophyll content: a comparative analysis of hyperspectral data for different types of vegetation. Plant Cell and Environment 39, 26092623. https://doi.org/10.1111/pce.12815 CrossRefGoogle ScholarPubMed
Jia, J., Chen, J., Zheng, X., Wang, Y. and Chen, Y. (2022). Tradeoffs in the spatial and spectral resolution of airborne hyperspectral imaging systems: A crop identification case study. IEEE Transactions on Geoscience and Remote Sensing 60. https://doi.org/10.1109/tgrs.2021.3096999 Google Scholar
Koger, C.H., Shaw, D.R., Reddy, K.N. and Bruce, L.M. (2004a). Detection of pitted morningglory (Ipomoea lacunosa) by hyperspectral remote sensing. I. Effects of tillage and cover crop residue. Weed Science 52, 222229. https://doi.org/10.1614/WS-03-082R CrossRefGoogle Scholar
Koger, C.H., Shaw, D.R., Reddy, K.N. and Bruce, L.M. (2004b). Detection of pitted morningglory (Ipomoea lacunosa) with hyperspectral remote sensing. II. Effects of vegetation ground cover and reflectance properties. Weed Science 52, 230235. https://doi.org/10.1614/WS-03-083R1 CrossRefGoogle Scholar
Koppe, W., Gnyp, M.L., Hennig, S.D., Li, F., Miao, Y.X., Chen, X.P., Jia, L.L. and Bareth, G. (2012). Multi-temporal hyperspectral and radar remote sensing for estimating winter wheat biomass in the North China plain. Photogrammetrie Fernerkundung Geoinformation 3, 281298. https://doi.org/10.1127/1432-8364/2012/0117 CrossRefGoogle Scholar
Koppe, W., Li, F., Gnyp, M.L., Miao, Y.X., Jia, L.L., Chen, X.P., Zhang, F.S. and Bareth, G. (2010). Evaluating multispectral and hyperspectral satellite remote sensing data for estimating winter wheat growth parameters at regional scale in the North China Plain. Photogrammetrie Fernerkundung Geoinformation 3, 167178. https://doi.org/10.1127/1432-8364/2010/0047 CrossRefGoogle Scholar
Krishna, G., Sahoo, R.N., Singh, P., Bajpai, V., Patra, H., Kumar, S., Dandapani, R., Gupta, V.K., Viswanathan, C., Ahmad, T. and Sahoo, P.M. (2019). Comparison of various modelling approaches for water deficit stress monitoring in rice crop through hyperspectral remote sensing. Agricultural Water Management 213, 231244. https://doi.org/10.1016/j.agwat.2018.08.029 CrossRefGoogle Scholar
Kumar, J., Vashisth, A., Sehgal, V.K. and Gupta, V.K. (2013). Assessment of aphid infestation in mustard by hyperspectral remote sensing. Journal of the Indian Society of Remote Sensing 41, 8390. https://doi.org/10.1007/s12524-012-0207-6 CrossRefGoogle Scholar
Latorre-Carmona, P., Knyazikhin, Y., Alonso, L., Moreno, J.F., Pla, F. and Yan, Y. (2014). On hyperspectral remote sensing of leaf biophysical constituents: decoupling vegetation structure and leaf optics using chris-proba data over crops in barrax. IEEE Geoscience and Remote Sensing Letters 11, 15791583. https://doi.org/10.1109/LGRS.2014.2305168 CrossRefGoogle Scholar
Lausch, A., Salbach, C., Schmidt, A., Doktor, D., Merbach, I. and Pause, M. (2015). Deriving phenology of barley with imaging hyperspectral remote sensing. Ecological Modelling 295, 123135. https://doi.org/10.1016/j.ecolmodel.2014.10.001 CrossRefGoogle Scholar
Li, Q.M., Hu, B.X. and Pattey, E. (2008). A scale-wise model inversion method to retrieve canopy biophysical parameters from hyperspectral remote sensing data. Canadian Journal of Remote Sensing 34, 311319. https://doi.org/10.5589/m08-014 Google Scholar
Liu, X.D. and Sun, Q.H. (2016). Early assessment of the yield loss in rice due to the brown plant hopper using a hyperspectral remote sensing method. International Journal of Pest Management 62, 205213. https://doi.org/10.1080/09670874.2016.1174791 CrossRefGoogle Scholar
Lu, B., Dao, P.D., Liu, J., He, Y. and Shang, J. (2020). Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sensing 12, 2659. https://doi.org/10.3390/rs12162659 CrossRefGoogle Scholar
Ma, D., Rehman, T.U., Zhang, L., Maki, H., Tuinstra, M.R. and Jin, J. (2021). Modeling of diurnal changing patterns in airborne crop remote sensing images. Remote Sensing 13. https://doi.org/10.3390/rs13091719 Google Scholar
Mahajan, G.R., Pandey, R.N., Sahoo, R.N., Gupta, V.K., Datta, S.C. and Kumar, D. (2017). Monitoring nitrogen, phosphorus and sulphur in hybrid rice (Oryza sativa L.) using hyperspectral remote sensing. Precision Agriculture 18, 736761. https://doi.org/10.1007/s11119-016-9485-2 CrossRefGoogle Scholar
Mahajan, G.R., Sahoo, R.N., Pandey, R.N., Gupta, V.K. and Kumar, D. (2014). Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.). Precision Agriculture 15, 499522. https://doi.org/10.1007/s11119-014-9348-7 CrossRefGoogle Scholar
Marshall, M., Thenkabail, P., Biggs, T. and Post, K. (2016). Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation). Agricultural and Forest Meteorology 218–219, 122134. https://doi.org/10.1016/j.agrformet.2015.12.025 CrossRefGoogle Scholar
Martin, M.P., Barreto, L., Riano, D., Fernandez-Quintanilla, C. and Vaughan, P. (2011). Assessing the potential of hyperspectral remote sensing for the discrimination of grass weeds in winter cereal crops. International Journal of Remote Sensing 32, 4967. https://doi.org/10.1080/01431160903439874 CrossRefGoogle Scholar
Martin, P., Zarco-Tejada, P.J., Gonzalez, M.R. and Berjon, A. (2007). Using hyperspectral remote sensing to map grape quality in ‘Tempranillo’ vineyards affected by iron deficiency chlorosis. Vitis 46, 714. https://doi.org/0042-7500(2007)46:1<7:UHRSTM>2.0.TX;2-4 Google Scholar
Meivel, S. and Maheswari, S. (2021). Remote sensing analysis of agricultural drone. Journal of the Indian Society of Remote Sensing 49, 689701. https://doi.org/10.1007/s12524-020-01244-y CrossRefGoogle Scholar
Mewes, T., Franke, J. and Menz, G. (2011). Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detection. Precision Agriculture 12, 795812. https://doi.org/10.1007/s11119-011-9222-9 CrossRefGoogle Scholar
Millan, V.G. and Azofeifa, S.A. (2018). Quantifying changes on forest succession in a dry tropical forest using angular-hyperspectral remote sensing. Remote Sensing 10, 1865. https://doi.org/10.3390/rs10121865 CrossRefGoogle Scholar
Mokhele, T.A. and Ahmed, F.B. (2010). Estimation of leaf nitrogen and silicon using hyperspectral remote sensing. Journal of Applied Remote Sensing 4, 043560. https://doi.org/10.1117/1.3525241 Google Scholar
Moreno, R., Corona, F., Lendasse, A., Grana, M. and Galvao, L.S. (2014). Extreme learning machines for soybean classification in remote sensing hyperspectral images. Neurocomputing 128, 207216. https://doi.org/10.1016/j.neucom.2013.03.057 CrossRefGoogle Scholar
Mulder, V.L., de Bruin, S., Schaepman, M.E. and Mayr, T.R. (2011). The use of remote sensing in soil and terrain mapping—a review. Geoderma 162, 119. https://doi.org/10.1016/j.geoderma.2010.12.018 CrossRefGoogle Scholar
Murphy, M.E., Boruff, B., Callow, J.N. and Flower, K.C. (2020). Detecting frost stress in wheat: A controlled environment hyperspectral study on wheat plant components and implications for multispectral field sensing. Remote Sensing 12. https://doi.org/10.3390/rs12030477 CrossRefGoogle Scholar
Nansen, C., Murdock, M., Purington, R. and Marshall, S. (2021). Early infestations by arthropod pests induce unique changes in plant compositional traits and leaf reflectance. Pest Management Science 77, 51585169. https://doi.org/10.1002/ps.6556 CrossRefGoogle ScholarPubMed
Nidamanuri, R.R. and Zbell, B. (2011). Transferring spectral libraries of canopy reflectance for crop classification using hyperspectral remote sensing data. Biosystems Engineering 110, 231246. https://doi.org/10.1016/j.biosystemseng.2011.07.002 CrossRefGoogle Scholar
Pacheco, A., Bannari, A., Staenz, K. and McNairn, H. (2008). Deriving percent crop cover over agriculture canopies using hyperspectral remote sensing. Canadian Journal of Remote Sensing 34, S110S123. https://doi.org/10.5589/m07-064 CrossRefGoogle Scholar
Peón, J., Fernández, S., Recondo, C. and Calleja, J.F. (2017). Evaluation of the spectral characteristics of five hyperspectral and multispectral sensors for soil organic carbon estimation in burned areas. International Journal of Wildland Fire 26, 230239. https://doi.org/10.1071/WF16122 CrossRefGoogle Scholar
Plant, R.E. (2001). Site-specific management: the application of information technology to crop production. Computers and Electronics in Agriculture 30, 929. https://doi.org/10.1016/S0168-1699(00)00152-6 CrossRefGoogle Scholar
Prabhakar, M., Prasad, Y.G., Desai, S., Thirupathi, M., Gopika, K., Rao, G.R. and Venkateswarlu, B. (2013). Hyperspectral remote sensing of yellow mosaic severity and associated pigment losses in Vigna mungo using multinomial logistic regression models. Crop Protection 45, 132140. https://doi.org/10.1016/j.cropro.2012.12.003 CrossRefGoogle Scholar
Prabhakar, M., Prasad, Y.G., Thirupathi, M., Sreedevi, G., Dharajothi, B. and Venkateswarlu, B. (2011). Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae). Computers and Electronics in Agriculture 79, 189198. https://doi.org/10.1016/j.compag.2011.09.012 CrossRefGoogle Scholar
Prasannakumar, N.R., Chander, S. and Sahoo, R.N. (2014). Characterization of brown plant hopper damage on rice crops through hyperspectral remote sensing under field conditions. Phytoparasitica 42, 387395. https://doi.org/10.1007/s12600-013-0375-0 CrossRefGoogle Scholar
Prasannakumar, N.R., Chander, S., Sahoo, RN and Gupta, V.K. (2013). Assessment of Brown Planthopper, (Nilaparvata lugens) [Stål], damage in rice using hyperspectral remote sensing. International Journal of Pest Management 59, 180188. https://doi.org/10.1080/09670874.2013.808780 CrossRefGoogle Scholar
Roslim, M.H.M., Juraimi, A.S., Che’Ya, N.N., Sulaiman, N., Abd Manaf, M.N.H., Ramli, Z. and Motmainna, M. (2021). Using remote sensing and an unmanned aerial system for weed management in agricultural crops: A review. Agronomy-Basel 11. https://doi.org/10.3390/agronomy11091809 Google Scholar
Ryu, C., Suguri, M. and Umeda, M. (2009). Model for predicting the nitrogen content of rice at panicle initiation stage using data from airborne hyperspectral remote sensing. Biosystems Engineering 104, 465475. https://doi.org/10.1016/j.biosystemseng.2009.09.002 CrossRefGoogle Scholar
Ryu, C., Suguri, M. and Umeda, M. (2011). Multivariate analysis of nitrogen content for rice at the heading stage using reflectance of airborne hyperspectral remote sensing. Field Crops Research 122, 214224. https://doi.org/10.1016/j.fcr.2011.03.013 CrossRefGoogle Scholar
Santos-Rufo, A., Mesas-Carrascosa, F.-J., Garcia-Ferrer, A. and Merono-Larriva, J.E. (2020). Wavelength selection method based on partial least square from hyperspectral unmanned aerial vehicle orthomosaic of irrigated Olive Orchards. Remote Sensing 12. https://doi.org/10.3390/rs12203426 CrossRefGoogle Scholar
Slonecker, E.T., Allen, D.W., Resmini, R.G., Rand, R.S. and Paine, E. (2018). Full-range, solar-reflected hyperspectral microscopy to support earth remote sensing research. Journal of Applied Remote Sensing 12, 026024. https://doi.org/10.1117/1.JRS.12.026024 CrossRefGoogle Scholar
Steven, M.C. (2004). Correcting the effects of field of view and varying illumination in spectral measurements of crops. Precision Agriculture 5, 5572. https://doi.org/10.1023/B:PRAG.0000013620.61519.86 CrossRefGoogle Scholar
Strachan, I.B., Pattey, E., Salustro, C. and Miller, J.R. (2008). Use of hyperspectral remote sensing to estimate the gross photosynthesis of agricultural fields. Canadian Journal of Remote Sensing 34, 333341. https://doi.org/10.5589/m08-051 Google Scholar
Tan, Y., Sun, J.Y., Zhang, B., Chen, M., Liu, Y. and Liu, X.D. (2019). Sensitivity of a ratio vegetation index derived from hyperspectral remote sensing to the Brown Planthopper stress on rice plants. Sensors 19, 375. https://doi.org/10.3390/s19020375 CrossRefGoogle Scholar
Tang, Y.L., Huang, J.F., Cai, S.H. and Wang, R.C. (2007). Nitrogen contents of rice panicle and paddy by hyperspectral remote sensing. Pakistan Journal of Biological Sciences 10, 44204425. https://doi.org/10.3923/pjbs.2007.4420.4425 Google ScholarPubMed
Thorp, K.R., Steward, B.L., Kaleita, A.L. and Batchelor, W.D. (2008). Using aerial hyperspectral remote sensing imagery to estimate corn plant stand density. Transactions of the Asabe 51, 311320. https://doi.org/10.13031/2013.24207 CrossRefGoogle Scholar
Udelhoven, T., Delfosse, P., Bossung, C., Ronellenfitsch, F., Mayer, F., Schlerf, M., Machwitz, M. and Hoffmann, L. (2013). Retrieving the bioenergy potential from maize crops using hyperspectral remote sensing. Remote Sensing 5, 254273. https://doi.org/10.3390/rs5010254 CrossRefGoogle Scholar
Viana, O.H., Mercante, E., de Andrade, M.G., Felipetto, H., Cattani, C.E.V., Bombarda, F.F. and Boas, M.A.V. (2018). Potential of hyperspectral remote sensing to estimate the yield of a Crambe abyssinica Hochst crop. Journal of Applied Remote Sensing 12, 016023. https://doi.org/10.1117/1.JRS.12.016023 CrossRefGoogle Scholar
Wei, L., Wang, K., Lu, Q., Liang, Y., Li, H., Wang, Z., Wang, Y. and Cao, L. (2021). Crops fine classification in airborne hyperspectral imagery based on multi-feature fusion and deep learning. Remote Sensing 13. https://doi.org/10.3390/rs13152917 Google Scholar
Xu, X., Nie, C., Jin, X., Li, Z., Zhu, H., Xu, H., Wang, J., Zhao, Y. and Feng, H. (2021). A comprehensive yield evaluation indicator based on an improved fuzzy comprehensive evaluation method and hyperspectral data. Field Crops Research 270.  108204. https://doi.org/10.1016/j.fcr.2021.108204 CrossRefGoogle Scholar
Yu, F.H., Xu, T.Y., Du, W., Ma, H., Zhang, G.S. and Chen, C.L. (2017). Radiative transfer models (RTMs) for field phenotyping inversion of rice based on UAV hyperspectral remote sensing. International Journal of Agricultural and Biological Engineering 10, 150157. https://doi.org/10.25165/j.ijabe.20171004.3076 Google Scholar
Yu, H., Kong, B., Wang, G.X., Sun, H. and Wang, L. (2018). Hyperspectral data-based prediction of ecological characteristics for grass species of alpine grasslands. Rangeland Journal 40, 1929. https://doi.org/10.1071/RJ17084 CrossRefGoogle Scholar
Yuan, H.H., Yang, G.J., Li, C.C., Wang, Y.J., Liu, J.G., Yu, H.Y., Feng, H.K., Xu, B., Zhao, X.Q. and Yang, X.D. (2017). Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: analysis of rf, ann, and svm regression models. Remote Sensing 9, 309. https://doi.org/10.3390/rs9040309 CrossRefGoogle Scholar
Zarco-Tejada, P.J., Ustin, S.L. and Whiting, M.L. (2005). Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery. Agronomy Journal 97, 641653. https://doi.org/10.2134/agronj2003.0257 CrossRefGoogle Scholar
Zhang, H.Y., Ren, X.X., Zhou, Y., Wu, Y.P., He, L., Heng, Y.R. Feng, W. and Wang, C.Y. (2018). Remotely assessing photosynthetic nitrogen use efficiency with in situ hyperspectral remote sensing in winter wheat. European Journal of Agronomy 101, 90100. https://doi.org/10.1016/j.eja.2018.08.010 CrossRefGoogle Scholar
Zhao, K.G., Valle, D., Popescu, S., Zhang, X.S. and Mallick, B. (2013). Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection. Remote Sensing of Environment 132, 102119. https://doi.org/10.1016/j.rse.2012.12.026 CrossRefGoogle Scholar
Zhong, Y., Hu, X., Luo, C., Wang, X., Zhao, J. and Zhang, L. (2020). WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H-2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF. Remote Sensing of Environment 250. https://doi.org/10.1016/j.rse.2020.112012 CrossRefGoogle Scholar
Zhou, W.H., Zhang, J.J., Zou, M.M., Liu, X.Q., Du, X.L., Wang, Q., Liu, Y.Y., Liu, Y. and Li, J.L. (2019). Prediction of cadmium concentration in brown rice before harvest by hyperspectral remote sensing. Environmental Science and Pollution Research 26, 18481856. https://doi.org/10.1007/s11356-018-3745-9 CrossRefGoogle Scholar
Zovko, M., Žibrat, U., Knapič, M., Kovačić, M.B. and Romić, D. (2019). Hyperspectral remote sensing of grapevine drought stress. Precision Agriculture 20, 335347. https://doi.org/10.1007/s11119-019-09640-2 CrossRefGoogle Scholar