Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T12:00:44.727Z Has data issue: false hasContentIssue false

The Role of the Ocean Carbon Cycle in Climate Change

Published online by Cambridge University Press:  26 February 2014

Christoph Heinze*
Affiliation:
Geophysical Institute, University of Bergen, Bergen, Norway; Bjerknes Centre for Climate Research, Bergen, Norway; Uni Climate, Uni Research AS, Bergen, Norway. E-mail: [email protected]

Abstract

The ocean carbon cycle plays a twofold role in the context of climate change: (1) through carbon dioxide gas exchange with the atmosphere and carbon cycle climate feedbacks, the ocean regulates the carbon dioxide concentration in the atmosphere and hence has a strong influence on the heat budget of the Earth; (2) the paleo-climatic marine sediment core record is largely based on biogenic matter fluxes from the ocean surface to the sea floor, which are part of the marine carbon cycle. The ocean is important for global carbon cycling, primarily due to three factors: (1) the ocean is a huge carbon reservoir with a relatively short turnover time; (2) carbon dioxide in sea water is effectively dissociated inorganically into other substances; (3) marine plankton is keeping the surface ocean carbon dioxide concentration at a lower level than would a lifeless ocean. On intermediate to long time scales, the ocean provides the most important sink for anthropogenic carbon dioxide. The marine uptake kinetics for carbon dioxide work on a longer time scale than current and projected emissions by humans.

Type
Sea, North, History, Narrative, Energy, Climate: Papers from the 2012 Academia Europaea Bergen Meeting
Copyright
Copyright © Academia Europaea 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ramanthan, V., Callis, L., Cess, R., Hansen, J., Isaksen, I., Kuhn, W., Lacis, A., Luther, F., Mahlmann, J., Reck, R. and Schlesinger, M. (1987) Climate–chemical interactions and effects of changing atmospheric trace gases. Reviews of Geophysics, 25(7), pp. 14411482.Google Scholar
2.Schidlowski, M., Appel, P. W. U., Eichmann, R. and Junge, C. E. (1979) Carbon isotope geochemistry of the 3.7 × 109-yr-old Isua sediments, West Greenland: implications for the Archaean carbon and oxygen cycles. Geochimica et Cosmochimica Acta, 43, pp. 189199.Google Scholar
3.Crutzen, P. J. (2002) Geology of mankind. Nature, 215, p. 23.Google Scholar
4.Broecker, W. S. and Peng, T.-H. (1982) Tracers in the Sea (Palisades, NY: ELDIGIO Press), 690 pp.Google Scholar
5.Zeebe, R. E. and Wolf-Gladrow, D. (2001) CO2 in Seawater: Equilibrium, Kinetics, Isotopes, Elsevier Oceanography Series, 65 (Amsterdam: Elsevier Science BV), 346 pp.Google Scholar
6.Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davisk, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E. and Stievenard, M. (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, pp. 429436.Google Scholar
7.Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J.-M., Fischer, H., Masson-Delmotte, V. and Jouzel, J. (2005) Stable carbon cycle–climate relationship during the late Pleistocene. Science, 310, pp. 13131317.Google Scholar
8.Crowley, T. J. (1995) Ice age terrestrial carbon changes revisited. Global Biogeochemcial Cycles, 3(9), pp. 377389.Google Scholar
9.Zeng, N. (2003) Glacial-interglacial atmospheric CO2 change—the glacial burial hypothesis. Advances in Atmospheric Sciences, 20(5), pp. 677693.Google Scholar
10.Heinze, C. and Hasselmann, K. (1993) Inverse multi-parameter modelling of paleo-climate carbon cycle indices. Quaternary Research, 40, pp. 281296.Google Scholar
11.Sigman, D. M. and Boyle, E. A. (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, pp. 859869.Google Scholar
12.Shakun, J. D., Clark, P. U., Feng, H., Marcott, S. A., Mix, A. C., Zhengyu, L., Otto-Bliesner, B., Schmittner, A. and Bard, E. (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature, 484, pp. 4954.Google Scholar
13.Riebesell, U., Schulz, K. G., Bellerby, R. G. J., Botros, M., Fritsche, P., Meyerhöfer, M., Neill, C., Nondal, G., Oschlies, A., Wohlers, J. and Zöllner, E. (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature, 450(7169), pp. 545548.Google Scholar
14.Heinze, C. (2004) Simulating oceanic CaCO3 export production in the greenhouse. Geophysical Research Letters, 31, L16308.Google Scholar
15.Archer, D. (2005) Fate of fossil fuel CO2 in geologic time. Journal of Geophysical Research - Oceans, 110(C9), C09S05.Google Scholar
16.Maier-Reimer, E. and Hasselmann, K. (1987) Transport and storage of CO2 in the ocean - an inorganic ocean-circulation carbon cycle model. Climate Dynamics, 2, pp. 6390.Google Scholar
17.Watson, A. J., Schuster, U., Bakker, D. C. E., Bates, N. R., Corbière, A., González-Dávila, M., Friedrich, T., Hauck, J., Heinze, C., Johannessen, T., Körtzinger, A., Metzl, N., Olafsson, J., Olsen, A., Oschlies, A., Padin, X. A., Pfeil, B., Santana-Casiano, J. M., Steinhoff, T., Telszewski, M., Rios, A. F., Wallace, D. W. R. and Wanninkhof, R. (2009) Tracking the variable North Atlantic sink for atmospheric CO2. Science, 326, pp. 13911393.Google Scholar
18.McKinley, G. A., Fay, A. R., Takahashi, T. and Metzl, N. (2011) Convergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescales. Nature Geoscience, 4(9), pp. 606610.Google Scholar