Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T10:56:59.990Z Has data issue: false hasContentIssue false

New issues on climate change forcings*

Published online by Cambridge University Press:  13 July 2009

Abstract

The increase of the emission of carbon dioxide and other greenhouse gases since the beginning of the industrial era, and the climatic change that it may trigger, are not subjects of public awareness, even though the evidence that the change has already been observed is still debated. The intensive research carried out in the last few decades to reduce the uncertainty in prediction has led to better identification of the other mechanisms able to influence the climate. The purpose of this paper is to present, in a simplified manner, these other sources of climate forcing, which may be responsible for a climatic variability superimposed on the long term one caused by the increase of the greenhouse gases and which may hide and even counteract its effects.

Type
Research Article
Copyright
Copyright © Academia Europaea 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jones, P., Wigley, T. M. L. and Farmer, G. (1991) Marine and land temperature data sets: a comparison and a look at recent trends. In Greenhouse-Gas-Induced Climatic Change: a Critical Appraisal of Simulations and Observations. Schlesinger, M. E. (Ed). Elsevier, Amsterdam, 153172.Google Scholar
2.Houghton, J. T., Filho, L. G. Meira, Bruce, J. P., Lee, H., Callander, B. A., Haites, E. F., Harris, N. and Maskell, K. (1994) I.P.C.C. Climate Change 1994: Radiative forcing of Climate and an Evaluation of the IPCC 1SP2 Emission scenarios, Cambridge University Press, Cambridge.Google Scholar
3.Houghton, J. T., Jenkins, G. J. and Ephraums, J. J. (1990) I.P.C.C. Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge.Google Scholar
4.W. M. O. (World Meteorological Organisation) (1994) Scientific Assessment and Ozone Depletion: 1994 WMO/UNEP Global Ozone Research and Monitoring Project Report No.37, Geneva, Switzerland.Google Scholar
5.Hofmann, D. J., Oltmans, S. J., Lathrop, J. A., Harris, J. M. and Voemel, H. (1994) Record low ozone at the South Pole in the spring of 1993. Geophys. Res. Lett. 21, 421424.Google Scholar
6.Miller, A. J., Nagatini, R. M., Tiao, G. C., Niu, X. F., Reinsel, G. C., Wuebbles, D. and Grant, K. (1992) Comparison of observed ozone and temperature trends in the lower stratosphere. Geophys. Res. Lett. 19, 929932.Google Scholar
7.Ramaswamy, V., Schwarzkopff, M. D. and Shine, K. P. (1992) Radiative forcing of climate from halocarbone-induced global stratospheric ozone loss. Nature, 355, 810812.Google Scholar
8.Solomon, S. and Daniel, J. S. (1996) Impact on the Montreal Protocol and its amendments on the rate of change of global radiative forcing. Climatic Change, in press.Google Scholar
9.Hauglustaine, D. A, Granier, C., Brasseur, G. P. and Megie, G. (1994) The importance of atmospheric chemistry in the calculation of radiative forcing of the climate system. J. Geophys. Res. 99, 11731186.CrossRefGoogle Scholar
10.Pham, M., Müller, J. F., Brasseur, G. P., Granier, C. and Megie, G. (1995) A 3D model study of the global sulphur cycle: contributions of anthropogenic and biogenic sources. Atmospheric Environment, in press.CrossRefGoogle Scholar
11.Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A. Jr., Hansen, J. E. and Hofmann, D. J. (1992) Climate forcing by anthropogenic aerosols. Science 255, 423430.Google Scholar
12.Kiehl, J. T. and Briegleb, B. P. (1993) The relative roles of sulphate aerosols and greenhouse gases in climate forcing. Science 260, 311314.Google Scholar
13.Le Treut, H., Forichon, M., Boucher, O., Li, Z.-X. (1995) Aerosol and greenhouse gases forcing: cloud feedbacks associated to the climate response. Climate Sensitivity to Radiative Perturbations: Physical Mechanisms and their Validation, Le Treut, H. (Ed), NATO ASI Series, Springer Verlag, 267280.Google Scholar
14.Hansen, J. E. and Lebedeff, S. (1987) Global trends of measured surface air temperature. J. Geophys. Res. 92, 1334513372.Google Scholar
15.Robock, A. and Mao, J. (1994) The volcanic signal in surface temperature oscillations. J. of Climate, 8(5), 10861103.2.0.CO;2>CrossRefGoogle Scholar
16.McCormick, M. P., Thomason, L. W. and Trepte, C. R. (1995) Atmospheric effects of Mt Pinatubo eruption. Nature 373, 399404.Google Scholar
17.Labitzke, K. and McCormick, M. P. (1992) Stratospheric temperature increases due to Pinatubo aerosols. Geophys. Rev. Lett. 19, 207210.Google Scholar
18.Spencer, R. W. and Christy, J. R. (1991) Precision lower stratospheric temperature monitoring with the MSU: validation and results 1979–1991. J. of Climate 6, 11941204.Google Scholar
19.Sato, M., Hansen, J. E., McCormick, M. P. and Pollack, J. B (1993) Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res. 98, 2298722994.CrossRefGoogle Scholar
20.Eddy, J. A. (1976) The Maunder Minimum. Science 192, 11891190.Google Scholar
21.Reid, G. C. (1991) Solar total irradiance variations and the global sea surface temperature record. J. Geophys. Res. 96, 28352844.Google Scholar
22.Friis-Christensen, E. and Lassen, K. (1991) Length of the solar cycle: an indicator of solar activity closely associated with climate. Science 254, 698700.Google Scholar
23.Labitzke, K. and van Loon, H. (1994) The 10–12 year atmospheric oscillation. Meteorol. Zetschrift N.F. 3, 259266.Google Scholar
24.Willson, R. C. and Hudson, H. S. (1991) The sun's luminosity over a complete cycle. Nature 351, 4244.CrossRefGoogle Scholar
25.Kelly, P. M. and Wigley, T. M. I. (1992) Solar cycle length, greenhouse forcing and global climate. Nature 360, 328330.Google Scholar
26.Schlesinger, M. E. and Ramankutty, N. (1992) Implications for global warming of intercycle solar irradiance variations. Nature 360, 330333.Google Scholar
27.I.P.C.C. (1996) Second Scientific Assessment of Climate Change. Cambridge University Press, Cambridge, in press.Google Scholar