Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-07T22:58:45.217Z Has data issue: false hasContentIssue false

How Does Early Brain Organization Promote Language Acquisition in Humans?

Published online by Cambridge University Press:  01 October 2008

G. Dehaene-Lambertz*
Affiliation:
INSERM; U562, France AP-HP; Service de Neurologie Pédiatrique, CHU Kremlin Bicêtre, France IFR49, Orsay, France
L. Hertz-Pannier
Affiliation:
IFR49, Orsay, France CEA, Laboratoire de recherche biomédicale, CEA/SAC/DSV/I2BM/NeuroSpin, Saclay, France
J. Dubois
Affiliation:
CEA, Laboratoire de recherche biomédicale, CEA/SAC/DSV/I2BM/NeuroSpin, Saclay, France INSERM; U663, Université Paris 5, Paris, France
S. Dehaene
Affiliation:
INSERM; U562, France IFR49, Orsay, France

Abstract

Speech processing in adults relies on precise and specialized networks, located primarily in the left hemisphere. Behavioural studies in infants indicate that a considerable amount of language learning already takes place in the first year of life in the domains of phonology, prosody, and word segmentation. Thanks to the progress of neuro-imaging, we can move beyond behavioural methods and examine how the infant’s brain processes verbal stimuli before learning. These studies reveal a structural and functional organization close to what is described in adults and suggest a strong bias for speech processing in these regions that might guide infants in the discovery of the properties of their native language, although no evidence can be provided as yet for speech specificity of such networks.

Type
Focus: The Origin of Language
Copyright
Copyright © Academia Europaea 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Broca, P. (1861) Remarques sur le siège de la faculté du langage articulé suivie d’une observation d’aphémie. Bulletin de la Société anatomique de Paris, 6, 330.Google Scholar
2.Geschwind, N. and Levitsky, W. (1968) Human brain: left-right asymmetries in temporal speech region. Science, 161, 186187.CrossRefGoogle ScholarPubMed
3.Knaus, T. A., Bollich, A. M., Corey, D. M., Lemen, L. C. and Foundas, A. L. (2006) Variability in perisylvian brain anatomy in healthy adults. Brain and Language, 97(2), 219232.CrossRefGoogle ScholarPubMed
4.Penhune, V. B., Zatorre, R. J., MacDonald, J. D. and Evans, A. C. (1996) Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cerebral Cortex, 6(5), 661672.CrossRefGoogle ScholarPubMed
5.Hutsler, J. J. (2003) The specialized structure of human language cortex: pyramidal cell size asymmetries within auditory and language-associated regions of the temporal lobes. Brain and Language, 86(2), 226242.CrossRefGoogle ScholarPubMed
6.Anderson, B., Southern, B. D. and Powers, R. E. (1999) Anatomic asymmetries of the posterior superior temporal lobes: a postmortem study. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 12(4), 247254.Google ScholarPubMed
7.Seldon, H. L. (1981) Structure of human auditory cortex. II. Axon distributions and morphological correlates of speech perception. Brain Research, 229(2), 295310.CrossRefGoogle ScholarPubMed
8.Boemio, A., Fromm, S., Braun, A. and Poeppel, D. (2005) Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nature Neuroscience, 8(3), 389395.CrossRefGoogle ScholarPubMed
9.Zatorre, R. J. and Belin, P. (2001) Spectral and temporal processing in human auditory cortex. Cerebral Cortex, 11(10), 946953.CrossRefGoogle ScholarPubMed
10.Plante, E. (1991) MRI finding in the parents and siblings of specifically language-impaired boys. Brain and Language, 41, 6780.CrossRefGoogle ScholarPubMed
11.Dehaene-Lambertz, G., Dupoux, E. and Gout, A. (2000) Electrophysiological correlates of phonological processing: a cross-linguistic study. Journal of Cognitive Neuroscience, 12(4), 635647.CrossRefGoogle ScholarPubMed
12.Jacquemot, C., Pallier, C., LeBihan, D., Dehaene, S. and Dupoux, E. (2003) Phonological grammar shapes the auditory cortex: a functional magnetic resonance imaging study. Journal of Neuroscience, 23, 95419546.CrossRefGoogle ScholarPubMed
13.Damasio, A., Bellugi, U., Poizner, H. and Gilder, J. V. (1986) Sign language aphasia during left-hemisphere Amytal injection. Nature, 322(24 July), 363365.CrossRefGoogle ScholarPubMed
14.Sakai, K. L., Tatsuno, Y., Suzuki, K., Kimura, H. and Ichida, Y. (2005) Sign and speech: amodal commonality in left hemisphere dominance for comprehension of sentences. Brain, 128(Pt 6), 14071417.CrossRefGoogle ScholarPubMed
15.Cantalupo, C., Pilcher, D. L. and Hopkins, W. D. (2003) Are planum temporale and sylvian fissure asymmetries directly related? A MRI study in great apes. Neuropsychologia, 41(14), 19751981.CrossRefGoogle ScholarPubMed
16.Gannon, P. J., Holloway, R. L., Broadfield, D. C. and Braun, A. R. (1998) Asymmetry of chimpanzee planum temporale: humanlike pattern of Wernicke’s brain language area homolog. Science, 279(9 January), 220222.CrossRefGoogle ScholarPubMed
17.Buxhoeveden, D. P., Switala, A. E., Litaker, M., Roy, E. and Casanova, M. F. (2001) Lateralization of minicolumns in human planum temporale is absent in nonhuman primate cortex. Brain Behavior and Evolution, 57(6), 349358.CrossRefGoogle ScholarPubMed
18.Ehret, G. (1987) Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls. Nature, 325, 249251.CrossRefGoogle ScholarPubMed
19.Petersen, M. R., Beecher, M. D., Zoloth, S. R., Green, S., Marler, P. R., Moody, D. B., et al. (1984) Neural lateralization of vocalizations by Japanese macaques: communicative significance is more important than acoustic structure. Behavioral Neuroscience, 98(5), 779790.CrossRefGoogle ScholarPubMed
20.Hauser, M. D. and Andersson, K. (1994) Left hemisphere dominance for processing vocalizations in adult, but not infant, rhesus monkeys: field experiments. The Proceedings of the National Academy of Sciences USA, 91(9), 39463948.CrossRefGoogle Scholar
21.Boye, M., Gunturkun, O. and Vauclair, J. (2005) Right ear advantage for conspecific calls in adults and subadults, but not infants, California sea lions (Zalophus californianus): hemispheric specialization for communication? European Journal of Neuroscience, 21(6), 17271732.CrossRefGoogle Scholar
22.Palleroni, A. and Hauser, M. (2003) Experience-dependent plasticity for auditory processing in a raptor. Science, 299(5610), 1195.CrossRefGoogle Scholar
23.Sun, T., Collura, R. V., Ruvolo, M. and Walsh, C. A. (2006) Genomic and evolutionary analyses of asymmetrically expressed genes in human fetal left and right cerebral cortex. Cerebral Cortex, 16(Suppl 1), i1825.CrossRefGoogle ScholarPubMed
24.Sun, T., Patoine, C., Abu-Khalil, A., Visvader, J., Sum, E., Cherry, T. J., et al. (2005) Early asymmetry of gene transcription in embryonic human left and right cerebral cortex. Science, 308(5729), 17941798.CrossRefGoogle ScholarPubMed
25.Chi, J. G., Dooling, E. C. and Gilles, F. H. (1977) Gyral development of the human brain. Annals of Neurology, 1, 8693.CrossRefGoogle ScholarPubMed
26.Dubois, J., Benders, M., Cachia, A., Lazeyras, F., Ha-Vinh Leuchter, R., Sizonenko, S. V., et al. (2008) Mapping the early cortical folding process in the preterm newborn brain. Cerebral Cortex, 18, 14441454.CrossRefGoogle ScholarPubMed
27.Fukunishi, K., Sawada, K., Kashima, M., Sakata-Haga, H., Fukuzaki, K. and Fukui, Y. (2006) Development of cerebral sulci and gyri in fetuses of cynomolgus monkeys (Macaca fascicularis). Anatomy and Embryology (Berl), 211(6), 757764.CrossRefGoogle ScholarPubMed
28.Gilmore, J. H., Lin, W., Prastawa, M. W., Looney, C. B., Vetsa, Y. S., Knickmeyer, R. C., et al. (2007) Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain. Journal of Neuroscience, 27(6), 12551260.CrossRefGoogle ScholarPubMed
29.Sowell, E. R., Thompson, P. M., Rex, D., Kornsand, D., Tessner, K. D., Jernigan, T. L., et al. (2002) Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: maturation in perisylvian cortices. Cerebral Cortex, 12(1), 1726.CrossRefGoogle ScholarPubMed
30.Witelson, S. F. and Pallie, W. (1973) Left hemisphere specialization for language in the newborn: Neuroanatomical evidence for asymmetry. Brain, 96, 641646.CrossRefGoogle ScholarPubMed
31.Thompson, P. M., Cannon, T. D., Narr, K. L., van Erp, T., Poutanen, V. P., Huttunen, M., et al. (2001) Genetic influences on brain structure. Nature Neuroscience, 4(12), 12531258.CrossRefGoogle ScholarPubMed
32.Emmorey, K., Allen, J. S., Bruss, J., Schenker, N. and Damasio, H. (2003) A morphometric analysis of auditory brain regions in congenitally deaf adults. The Proceedings of the National Academy of Sciences USA, 100(17), 1004910054.CrossRefGoogle ScholarPubMed
33.Lenneberg, E. (1967) Biological Foundations of Language (New York: Wiley).CrossRefGoogle Scholar
34.Dubois, J., Dehaene-Lambertz, G., Perrin, M., Mangin, J. F., Cointepas, Y., Duchesnay, E., et al. (2008) Asynchrony of the early maturation of white matter bundles in healthy infants: quantitative landmarks revealed noninvasively by diffusion tensor imaging. Human Brain Mapping, 29, 1427.CrossRefGoogle ScholarPubMed
35.Dubois, J., Dehaene-Lambertz, G., Soares, C., Cointepas, Y., Le Bihan, D. and Hertz-Pannier, L. (2008) Microstructural correlates of infant functional development: example of the visual pathways. Journal of Neuroscience, 28(8), 19431948.CrossRefGoogle ScholarPubMed
36. J. Dubois, L. Hertz-Pannier, A. Cachia, J. F. Mangin, D. Le Bihan and G. Dehaene-Lambertz (In press) Structural asymmetries in the infant language and sensori-motor networks. Cerebral Cortex.Google Scholar
37.Chiron, C., Jambaque, I., Nabbout, R., Lounes, R., Syrota, A. and Dulac, O. (1997) The right brain hemisphere is dominant in human infants. Brain, 120, 10571065.CrossRefGoogle ScholarPubMed
38.Mehler, J., Jusczyk, P., Lambertz, G., Halsted, N., Bertoncini, J. and Amiel-Tison, C. (1988) A precursor of language acquisition in young infants. Cognition, 29, 143178.CrossRefGoogle ScholarPubMed
39.Pena, M., Maki, A., Kovacic, D., Dehaene-Lambertz, G., Koizumi, H., Bouquet, F., et al. (2003) Sounds and silence: an optical topography study of language recognition at birth. The Proceedings of the National Academy of Sciences USA, 100(20), 1170211705.CrossRefGoogle ScholarPubMed
40.Dehaene-Lambertz, G., Dehaene, S. and Hertz-Pannier, L. (2002) Functional neuroimaging of speech perception in infants. Science, 298, 20132015.CrossRefGoogle ScholarPubMed
41.Dehaene-Lambertz, G. (2000) Cerebral specialization for speech and non-speech stimuli in infants. Journal of Cognitive Neuroscience, 12(3), 449460.CrossRefGoogle ScholarPubMed
42. D. Bristow, G. Dehaene-Lambertz, J. Mattout, C. Soares, T. Gliga, S. Baillet, et al (In press) Hearing faces: crossmodal representations of speech in two-month-old infants. Journal of Cognitive Neuroscience.Google Scholar
43.Dehaene-Lambertz, G., Pena, M., Christophe, A., Charolais, A. and Landrieu, P. (2004) Phoneme discrimination in a neonate with a left sylvian infarct. Brain & Language, 88, 2638.CrossRefGoogle Scholar
44.Hertz-Pannier, L., Chiron, C., Jambaque, I., Renaux-Kieffer, V., Van de Moortele, P. F., Delalande, O., et al. (2002) Late plasticity for language in a child’s non-dominant hemisphere: a pre- and post-surgery fMRI study. Brain, 125(Pt 2), 361372.CrossRefGoogle Scholar
45.Bates, E. and Roe, K. (2001) Language development in children with unilateral brain injury. In: C. Nelson and M. Luciana (eds) Handbook of Developmental Cognitive Neurocsience (Cambridge, MA: MIT Press), pp. 281307.Google Scholar
46.Holland, S. K., Plante, E., Weber Byars, A., Strawsburg, R. H., Schmithorst, V. J. and Ball, W. S. Jr. (2001) Normal fMRI brain activation patterns in children performing a verb generation task. Neuroimage, 14(4), 837843.CrossRefGoogle ScholarPubMed
47.Dehaene-Lambertz, G. and Pena, M. (2001) Electrophysiological evidence for automatic phonetic processing in neonates. NeuroReport, 12, 31553158.CrossRefGoogle ScholarPubMed
48.Dehaene-Lambertz, G. and Baillet, S. (1998) A phonological representation in the infant brain. NeuroReport, 9, 18851888.CrossRefGoogle ScholarPubMed
49.Dehaene-Lambertz, G., Pallier, C., Serniklaes, W., Sprenger-Charolles, L., Jobert, A. and Dehaene, S. (2005) Neural correlates of switching from auditory to speech perception. NeuroImage, 24, 2133.CrossRefGoogle ScholarPubMed
50.Dehaene-Lambertz, G., Hertz-Pannier, L., Dubois, J., Meriaux, S., Roche, A., Sigman, M., et al. (2006) Functional organization of perisylvian activation during presentation of sentences in preverbal infants. The Proceedings of the National Academy of Sciences USA, 103(38), 1424014245.CrossRefGoogle ScholarPubMed
51.Dehaene-Lambertz, G., Dehaene, S., Anton, J. L., Campagne, A., Ciuciu, P., Dehaene, G. P., Denghein, I., Jobert, A, LeBihan, D., Sigman, M., Pallier, C. and Poline, J. B. (2006) Functional segregation of cortical language areas by sentence repetition. Human Brain Mapping, 27, 360371.CrossRefGoogle ScholarPubMed
52.Kaas, J. H. and Hackett, T. A. (2000) Subdivisions of auditory cortex and processing streams in primates. The Proceedings of the National Academy of Sciences USA, 97(22), 1179311799.CrossRefGoogle ScholarPubMed
53.Pandya, D. N. and Yeterian, E. H. (1990) Architecture and connections of cerebral cortex: implications for brain evolution and function. In: A. B. Scheibel and A. F. Wechsler (eds) Neurobiology of Higher Cognitive Function (New York: Guilford Press), pp. 5383.Google Scholar
54.Dehaene, S. and Cohen, L. (2007) Cultural recycling of cortical maps. Neuron, 56(2), 384398.CrossRefGoogle ScholarPubMed
55.Fritz, J., Mishkin, M. and Saunders, R. C. (2005) In search of an auditory engram. The Proceedings of the National Academy of Sciences USA, 102(26), 93599364.CrossRefGoogle ScholarPubMed
56.Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D. and Plunkett, K. (1996) Rethinking Innateness: A Connectionist Perspective on Development (Cambridge, MA: MIT Press).Google Scholar