Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T17:56:32.733Z Has data issue: false hasContentIssue false

Uncovering the Mediterranean Salt Giant (MEDSALT) - Scientific Networking as Incubator of Cross-disciplinary Research in Earth Sciences

Published online by Cambridge University Press:  07 October 2019

Angelo Camerlenghi
Affiliation:
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy. Email: [email protected]
Vanni Aloisi
Affiliation:
Institut de Physique du Globe de Paris, France. Email: [email protected]

Abstract

About 6 million years ago, the Mediterranean basin was the location of one of the most extraordinary events in the recent geological history of the Earth: the Messinian Salinity Crisis. Restriction of the seawater exchange between the Atlantic and the Mediterranean led to excess evaporation and deposition on the bottom of the deep Mediterranean basins of a 1.5 km-thick salt layer. Research on this event initiated a long-term scientific controversy. COST (European Cooperation in Science and Technology) and Marie Skłodowska-Curie European Training Networks were identified as the most appropriate tools to address and solve the controversy using a highly cross-disciplinary approach.

Type
AE 2018 Annual Conference Lectures
Copyright
© Academia Europaea 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aloisi, G, Baudrand, M, Lécuyer, C, Rouchy, J-M, Pancost, RD, Aref, MAM and Grossi, V (2013) Biomarker and isotope evidence for microbially-mediated carbonate formation from gypsum and petroleum hydrocarbons. Chemical Geology 347(6), 199207.CrossRefGoogle Scholar
Amadori, C, Garcia-Castellanos, D, Toscani, G, Sternai, P, Fantoni, R, Ghielmi, M and Di Giulio, A (2018) Restored topography of the Po Plain-Northern Adriatic region during the Messinian base-level drop - Implications for the physiography and compartmentalization of the palaeo-Mediterranean basin. Basin Research 30(6), 12471263.CrossRefGoogle Scholar
Attenborough, D (1987) The First Eden: The Mediterranean World and Man. Boston: Little, Brown & Co, 240 pp.Google Scholar
Bache, F, Popescu, S-M, Rabineau, M, Gorini, C, Suc, J-P, Clauzon, G, Olivet, J-L, Rubino, J-L, Melinte-Dobrinescu, MC, Estrada, F, Londeix, L, Armijo, R, Meyer, B, Jolivet, L, Jouannic, G, Leroux, E, Aslanian, D, Reis, ATD, Mocochain, L, Dumurdžanov, N, Zagorchev, I, Lesić, V, Tomić, D, Namık Çağatay, M, Brun, J-P, Sokoutis, D, Csato, IT, Ucarkus, G and Çakır, Z (2012) A two-step process for the reflooding of the Mediterranean after the Messinian Salinity Crisis. Basin Research 24, 125153.CrossRefGoogle Scholar
Blanc, P-L (2002) The opening of the Plio-Quaternary Gibraltar Strait: assessing the size of a cataclysm. Geodinamica Acta 15, 303317.CrossRefGoogle Scholar
Bowman, SA (2012) A comprehensive review of the MSC facies and their origins in the offshore Sirt Basin, Libya. Petroleum Geoscience 18(4), 457469.CrossRefGoogle Scholar
CIESM (2008) The Messinian Salinity Crisis from mega-deposits to microbiology – a consensus report. N. 33 CIESM Workshop monographs, edited by Briand, F.. 168 pp. Monaco: CIESM.Google Scholar
Colwell, FS, and D’Hondt, S (2013) Nature and extent of the deep biosphere. Reviews in Mineralogy and Geochemistry 75(1), 547574.CrossRefGoogle Scholar
Daffonchio, D, Borin, S, Brusa, T, Brusetti, L, van der Wielen, PWJJ, Bolhuis, H, Yakimov, MM, D’Auria, G, Giuliano, L, Marty, D, Tamburini, C, McGenity, TJ, Hallsworth, JE, Sass, AM, Timmis, KN, Tselepides, A, de Lange, GJ, Hübner, A, Thomson, J, Varnavas, SP, Gasparoni, F, Gerber, HW, Malinverno, E, Corselli, C and Biodeep Scientific Party (2006) Stratified prokaryote network in the oxic–anoxic transition of a deep-sea halocline. Nature 440, 203207.CrossRefGoogle Scholar
Dela Pierre, F, Natalicchio, M, Ferrando, S, Giustetto, R, Birgel, D, Carnevale, G, Gier, S, Lozar, F, Marabello, D and Peckmann, J (2015). Are the large filamentous microfossils preserved in Messinian gypsum colorless sulfide-oxidizing bacteria? Geology 43(10), 855858.CrossRefGoogle Scholar
Evans, N, Turchyn, AV, Gazquez, F, Bontognali, TRR, Chapman, HJ and Hodell, DA (2015) Coupled measurements of δ18O and δD of hydration water and salinity of fluid inclusions in gypsum from the Messinian Yesares Member, Sorbas Basin (SE Spain). Earth and Planetary Science Letters 430, 499510.CrossRefGoogle Scholar
Flecker, R, Krijgsman, W, Capella, W, de Castro Martíns, C, Dmitrieva, E, Mayser, JP, Marzocchi, A, Modestu, S, Ochoa, D, Simon, D, Tulbure, M, van den Berg, B, van der Schee, M, de Lange, G, Ellam, R, Govers, R, Gutjahr, M, Hilgen, F, Kouwenhoven, T, Lofi, J, Meijer, P, Sierro, FJ, Bachiri, N, Barhoun, N, Alami, AC, Chacon, B, Flores, JA, Gregory, J, Howard, J, Lunt, D, Ochoa, M, Pancost, R, Vincent, S and Yousfi, MZ (2015) Evolution of the late Miocene Mediterranean–Atlantic gateways and their impact on regional and global environmental change. Earth Science Reviews 150, 365392.CrossRefGoogle Scholar
Garcia-Castellanos, D, Estrada, F, Jiménez-Munt, I, Gorini, C, Fernàndez, M, Vergés, J and De Vicente, R (2009) Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature 462, 778781. https://doi.org/10.1038/nature08555.CrossRefGoogle Scholar
Ghielmi, M, Minervini, M, Nini, C, Rogledi, S and Rossi, M (2013) Late Miocene-Middle Pleistocene sequences in the Po Plain e Northern Adriatic Sea (Italy): the stratigraphic record of modification phases affecting a complex foreland basin. Marine and Petroleum Geology 42, 5081.CrossRefGoogle Scholar
Gvirtzman, Z, Manzi, V, Calvo, R, Gavrieli, I, Gennari, R, Lugli, S, Reghizzi, M and Roveri, M (2017) Intra-Messinian truncation surface in the Levant Basin explained by subaqueous dissolution. Geology 45(10), 915918.CrossRefGoogle Scholar
Hsü, KJ, Ryan, WFB and Cita, MB (1973) The Late Miocene desiccation of the Mediterranean. Nature 242, 240244.CrossRefGoogle Scholar
Inagaki, F, Hinrichs, K-U, Kubo, Y, Bowles, MW, Heuer, VB, Hong, W-L, Hoshino, T, Ijiri, A, Imachi, H, Ito, M, Kaneko, M, Lever, MA, Lin, Y-S, Methé, BA, Morita, S, Morono, Y, Tanikawa, W, Bihan, M, Bowden, SA, Elvert, M, Glombitza, C, Gross, D, Harrington, GJ, Hori, T, Li, K, Limmer, D, Liu, C-H, Murayama, M, Ohkouchi, N, Ono, S, Park, Y-S, Phillips, SC, Prieto-Mollar, X, Purkey, M, Riedinger, N, Sanada, Y, Sauvage, J, Snyder, G, Susilawati, R, Takano, Y, Tasumi, E, Terada, T, Tomaru, H, Trembath-Reichert, E, Wang, DT and Yamada, Y, (2015) Exploring deep microbial life in coal-bearing sediment down to ∼2.5 km below the ocean floor. Science 349, 420424.CrossRefGoogle Scholar
Krijgsman, W, Stoica, M, Vasiliev, I and Popov, VV (2010) Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis. Earth and Planetary Science Letters 290, 183191.CrossRefGoogle Scholar
Krijgsman, W, Capella, W, Simon, D, Hilgen, FJ, Kouwenhoven, TJ, Meijer, PTh, Sierro, FJ, Tulbure, MA, van den Berg, BCJ, van der Schee, M and Flecker, R (2018) The Gibraltar Corridor: Watergate of the Messinian Salinity Crisis. Marine Geology 403, 238246.CrossRefGoogle Scholar
Lofi, J (2018) Seismic Atlas of the Messinian Salinity Crisis Markers in the Mediterranean Sea, Vol. 2, 72 pages + DVD. Co-publishers CGMW and Mémoires de la Société Géologie de France, 181.Google Scholar
Lugli, S, Manzi, V, Roveri, M and Schreiber, B (2010) The primary lower gypsum in the Mediterranean: a new facies interpretation for the first stage of the Messinian Salinity Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 8399.Google Scholar
Lugli, S, Manzi, V, Roveri, M and Schreiber, B (2015) The deep record of the Messinian salinity crisis: evidence of a non-desiccated Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 433, 201218.CrossRefGoogle Scholar
Mas, G, Maillard, A, Alcover, JA, Fornós, JJ, Bover, P and Torres-Roig, E (2018) Terrestrial colonization of the Balearic Islands: New evidence for the Mediterranean sea-level drawdown during the Messinian Salinity Crisis. Geology 46(6), 527530.CrossRefGoogle Scholar
Madof, AS, Bertoni, C and Lofi, C (2019) Discovery of vast fluvial deposits provides evidence for drawdown during the late Miocene Messinian salinity crisis. Geology https://doi.org/10.1130/G45873.1.CrossRefGoogle Scholar
Marzocchi, A, Flecker, R, Baak, CGC, van Lunt, DJ and Krijgsman, W (2016) Mediterranean outflow pump: An alternative mechanism for the Lago-mare and the end of the Messinian Salinity Crisis. Geology 44, 523526.CrossRefGoogle Scholar
McGenity, T, Gemmell, RT, Grant, WD and Stan-Lotter, H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environmental Microbiology 2, 243250.CrossRefGoogle Scholar
Micallef, A, Camerlenghi, A, Garcia-Castellanos, D, Otero, DC, Gutscher, M-A, Barreca, G, Spatola, D, Facchin, L, Geletti, R, Krastel, S, Gross, F and Urlaub, M (2018) Evidence of the Zanclean megaflood in the eastern Mediterranean Basin. Scientific Reports 8, 1078. https://doi.org/10.1038/s41598-018-19446-3.CrossRefGoogle Scholar
Natalicchio, M, Pierre, FD, Lugli, S, Lowenstein, TK, Feiner, SJ, Ferrando, S, Manzi, V, Roveri, M and Clari, P (2014) Did the Late Miocene (Messinian) gypsum precipitate from evaporated marine brines? Insights from the Piedmont Basin (Italy). Geology 42(3), 179183.CrossRefGoogle Scholar
Nesteroff, WD (1973) Un Modèle por les évaporites messiniennes en Méditerranée, des bassins peu profonds avec dépots d’évaporites lagunaires. In Drooger, CW (ed), Messinian Events in the Mediterranean, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Geodynamics Scientific Reports 7, 68–81.Google Scholar
Orcutt, BN, LaRowe, DE, Biddle, JF, Colwell, FS, Glazer, BT, Reese, BK, Kirkpatrick, JB, Lapham, LL, Mills, HJ, Sylvan, JB, Wankel, SD and Wheat, CG (2013) Microbial activity in the marine deep biosphere: progress and prospects. Frontiers in Microbiology 4, 189. doi: 10.3389/fmicb.2013.00189.CrossRefGoogle Scholar
Panieri, G, Lugli, S, Manzi, V, Roveri, M, Schreiber, BC and Palinska, KA (2010). Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy. Geobiology 8(2), doi:10.1111/j.1472-4669.2009.00230.CrossRefGoogle Scholar
Peckmann, J, Paul, J and Thiel, V (1999) Bacterially mediated formation of diagenetic aragonite and native sulfur in Zechstein carbonates (Upper Permian, Central Germany). Sedimentary Geology 126, 205222.CrossRefGoogle Scholar
Roussel, EG, Bonavita, MA, Querellou, J, Cragg, BA, Webster, G, Prieur, D and Parkes, RJ (2008) Extending the sub-sea-floor biosphere. Science 320(5879), 1046.CrossRefGoogle Scholar
Roveri, M, Bassetti, MA and Ricci Lucchi, F (2001) The Mediterranean Messinian salinity crisis: an Apennine foredeep perspective. Sedimentary Geology 140, 201214.CrossRefGoogle Scholar
Roveri, M, Flecker, R, Krijgsman, W, Lofi, J, Lugli, S, Manzi, V, Sierro, FJ, Bertini, A, Camerlenghi, A, De Lange, GJ, Govers, R, Hilgen, FJ, Hubscher, C, Meijer, PTh and Stoica, M (2014a) The Messinian Salinity Crisis: past and future of a great challenge for marine sciences. Marine Geology 352, 2558.CrossRefGoogle Scholar
Roveri, M, Manzi, V, Bergamasco, A, Falcieri, FM, Gennari, R, Lugli, S and Schreiber, BC (2014b) Dense shelf water cascading and Messinian canyons: A new scenario for the Mediterranean salinity crisis. American Journal of Science 314(3), 751784.CrossRefGoogle Scholar
Schmalz, RF (1969) Deep-water evaporite deposition, a genetic model. American Association of Petroleum Geologists 53, 798823.Google Scholar
Schubert, BA, Lowenstein, TK, Timofeeff, MN and Parker, MA (2009) How do prokaryotes survive in fluid inclusions in halite for 30,000 years? Geology 37, 10591062.CrossRefGoogle Scholar
Selli, R (1960) Il Messiniano Mayer-Eymar 1867. Proposta di un neostratotipo. Giornale di Geologia 28, Bologna.Google Scholar
Selli, R (1973) An outline of the Italian Messinian. In Drooger, CW (ed.), Messinian Events in the Mediterranean, Kon. Ned. Akad. Wetnesch., Geodynamics Scientfic Reports 7, 150–171.Google Scholar
Simon, D and Meijer, P (2015) Dimensions of the Atlantic–Mediterranean connection that caused the Messinian Salinity Crisis. Marine Geology 364, 5364.CrossRefGoogle Scholar
Simon, D and Meijer, P (2017) Salinity stratification of the Mediterranean Sea during the Messinian crisis: a first model analysis. Earth and Planetary Science Letters 479, 366376.CrossRefGoogle Scholar
Simon, D, Marzocchi, A, Flecker, R, Lunt, DJ, Hilgen, FJ and Meijer, PT (2017) Quantifying the Mediterranean freshwater budget throughout the late Miocene: new implications for sapropel formation and the Messinian Salinity Crisis. Earth and Planetary Science Letters 472, 2537.CrossRefGoogle Scholar
Topper, RPM, Flecker, R, Meijer, P and Wortel, MJR (2011) A box model of the Miocene Mediterranean Sea: implications from combined 87Sr/86Sr and salinity data. Paleoceanography 26 (PA3223).CrossRefGoogle Scholar
Urgeles, R, Camerlenghi, A, García-Castellanos, D, De Mol, B, Garcés, M, Verges, J, Haslam, I and Hardman, M (2010) New constraints on the Messinian sealevel drawdown from 3D seismic data of the Ebro Margin, western Mediterranean. Basin Research doi/10.1111/j.1365-2117.2010.00477.x.CrossRefGoogle Scholar
Vasiliev, I, Mezger, EM, Lugli, S, Reichart, G-I, Manzi, V and Roveri, M (2017) How dry was the Mediterranean during the Messinian salinity crisis? Palaeogeography, Palaeoclimatology, Palaeoecology 471, 120133.CrossRefGoogle Scholar
Vasiliev, I, Karakitsios, V, Bouloubassi, I, Agiadi, K, Kontakiotis, G, Antonarakou, A, Triantaphyllou, M, Gogou, A, Kafousia, N, de Rafélis, M, Zarkogiannis, S, Kaczmar, F, Parinos, C and Pasadakis, N (2019) Large sea surface temperature, salinity, and productivity-preservation changes preceding the onset of the Messinian Salinity Crisis in the eastern Mediterranean Sea. Paleoceanography and Paleoclimatology https://doi.org/10.1029/2018PA003438.CrossRefGoogle Scholar
Warren, JK (2010) Evaporites through time: tectonic, climatic and eustatic controls in marine nonmarine deposits. Earth-Science Review 98, 217268.CrossRefGoogle Scholar
Wilson, JT (1968) Static or mobile earth: the current scientific revolution. Proceedings of the American Philosophical Society 112, 309320.Google Scholar
Ziegenbalg, SB, Birgel, D, Hoffmann-Sell, L, Pierre, C, Rouchy, JM and Peckmann, J (2012) Anaerobic oxidation of methane in hypersaline Messinian environments revealed by 13C depleted molecular fossils. Chemical Geology 292–293, 140148.CrossRefGoogle Scholar