Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T20:53:43.087Z Has data issue: false hasContentIssue false

Structural and metabolic differentiation between bipolar disorder with psychosis and substance-induced psychosis: An integrated MRI/PET study

Published online by Cambridge University Press:  31 December 2016

A.C. Altamura
Affiliation:
Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
G. Delvecchio
Affiliation:
Scientific Institute IRCCS “E. Medea”, Italy
G. Marotta
Affiliation:
Department of Services, Neuroradiology Unit, Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
L. Oldani
Affiliation:
Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
A. Pigoni
Affiliation:
Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
V. Ciappolino
Affiliation:
Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
E. Caletti
Affiliation:
Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
C. Rovera
Affiliation:
Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
C. Dobrea
Affiliation:
Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
C. Arici
Affiliation:
Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
B. Benatti
Affiliation:
Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
G. Camuri
Affiliation:
Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
C. Prunas
Affiliation:
Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
R.A. Paoli
Affiliation:
Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
B. Dell’osso
Affiliation:
Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy Department of Psychiatry, Bipolar Disorders Clinic, Stanford University, CA, USA
C. Cinnante
Affiliation:
Department of Services, Neuroradiology Unit, Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
F.M. Triulzi
Affiliation:
Department of Services, Neuroradiology Unit, Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
P. Brambilla*
Affiliation:
Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, Houston, TX, USA
*
Corresponding author at: Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via F. Sforza 35, 20122 Milan, Italy. E-mail address: [email protected] (P. Brambilla).
Get access

Abstract

Background

Bipolar disorder (BD) may be characterized by the presence of psychotic symptoms and comorbid substance abuse. In this context, structural and metabolic dysfunctions have been reported in both BD with psychosis and addiction, separately. In this study, we aimed at identifying neural substrates differentiating psychotic BD, with or without substance abuse, versus substance-induced psychosis (SIP) by coupling, for the first time, magnetic resonance imaging (MRI) and positron emission tomography (PET).

Methods

Twenty-seven BD type I psychotic patients with (n = 10) or without (n = 17) substance abuse, 16 SIP patients and 54 healthy controls were enrolled in this study. 3T MRI and 18-FDG-PET scanning were acquired.

Results

Gray matter (GM) volume and cerebral metabolism reductions in temporal cortices were observed in all patients compared to healthy controls. Moreover, a distinct pattern of fronto-limbic alterations were found in patients with substance abuse. Specifically, BD patients with substance abuse showed volume reductions in ventrolateral prefrontal cortex, anterior cingulate, insula and thalamus, whereas SIP patients in dorsolateral prefrontal cortex and posterior cingulate. Common alterations in cerebellum, parahippocampus and posterior cingulate were found in both BD with substance abuse and SIP. Finally, a unique pattern of GM volumes reduction, with concomitant increased of striatal metabolism, were observed in SIP patients.

Conclusions

These findings contribute to shed light on the identification of common and distinct neural markers associated with bipolar psychosis and substance abuse. Future longitudinal studies should explore the effect of single substances of abuse in patients at the first-episode of BD and substance-induced psychosis.

Type
Original article
Copyright
Copyright © European Psychiatric Association 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bowden, C.L.Strategies of reduced misdiagnosis of bipolar disorder. Psych Serv 2001;52:5155.CrossRefGoogle Scholar
Grande, I.Berk, M.Birmaher, B.Vieta, E.Bipolar disorder. Lancet 2016;387(10027):15611572.CrossRefGoogle ScholarPubMed
Cassidy, F.Ahearn, E.P.Carroll, B.J.Substance abuse in bipolar disorder. Bipolar Disord 2001;3(4):181188.CrossRefGoogle ScholarPubMed
Arias, F.Szerman, N.Vega, P.Mesías, B.Basurte, I.Rentero, D.Bipolar disorder and substance use disorders. Madrid study on the prevalence of dual disorders/pathology. Adicciones 2016;782:265273.Google Scholar
Gage, S.H.Hickman, M.Zammit, S.Association between cannabis and psychosis: epidemiologic evidence. Biol Psychiatry 2016;79(7):549556.CrossRefGoogle ScholarPubMed
Goodwin, F.Jamison, K.Manic-depressive illness: bipolar disorders and recurrent depression, 2nd ed., New York: Oxford University Press; 2007.Google Scholar
Marneros, A.Röttig, S.Röttig, D.Tscharntke, A.Brieger, P.Bipolar I disorder with mood-incongruent psychotic symptoms: a comparative longitudinal study. Eur Arch Psychiatry Clin Neurosci 2009;259(3):131136.CrossRefGoogle ScholarPubMed
Tao, R.Cousijn, H.Jaffe, A.E.Burnet, P.W.Edwards, F.Eastwood, S.L.et al.Expression of ZNF804A in human brain and alterations in schizophrenia, bipolar disorder, and major depressive disorder: a novel transcript fetally regulated by the psychosis risk variant rs1344706. JAMA Psychiatry 2014;71(10):11121120.CrossRefGoogle ScholarPubMed
Keshavan, M.S.Morris, D.W.Sweeney, J.A.Pearlson, G.Thaker, G.Seidman, L.J.et al.A dimensional approach to the psychosis spectrum between bipolar disorder and schizophrenia: the Schizo-Bipolar Scale. Schizophr Res 2011;133(1–3):250254.CrossRefGoogle ScholarPubMed
Simonsen, C.Sundet, K.Vaskinn, A.Birkenaes, A.B.Engh, J.A.Faerden, A.et al.Neurocognitive dysfunction in bipolar and schizophrenia spectrum disorders depends on history of psychosis rather than diagnostic group. Schizophr Bull 2011;37(1):7383.CrossRefGoogle ScholarPubMed
Tost, H.Ruf, M.Schmäl, C.Schulze, T.G.Knorr, C.Vollmert, C.et al.Prefrontal-temporal gray matter deficits in bipolar disorder patients with persecutory delusions. J Affect Disord 2010;120(1–3):5461.CrossRefGoogle ScholarPubMed
James, A.Hough, M.James, S.Burge, L.Winmill, L.Nijhawan, S.et al.Structural brain and neuropsychometric changes associated with pediatric bipolar disorder with psychosis. Bipolar Disord 2011;13(1):1627.CrossRefGoogle ScholarPubMed
Anticevic, A.Savic, A.Repovs, G.Yang, G.McKay, D.R.Sprooten, E.et al.Ventral anterior cingulate connectivity distinguished nonpsychotic bipolar illness from psychotic bipolar disorder and schizophrenia. Schizophr Bull 2015;41(1):133143.CrossRefGoogle Scholar
Schaffer, A.Cairney, J.Veldhuizen, S.Kurdyak, P.Cheung, A.Levitt, A.A population-based analysis of distinguishers of bipolar disorder from major depressive disorder. J Affect Disord 2010;125(1–3):103110.CrossRefGoogle ScholarPubMed
Parkar, S.R.Ramanathan, S.Nair, N.Batra, S.A.Adarkar, S.A.Kund, P.et al.Are the effects of cannabis dependence on glucose metabolism similar to schizophrenia? An FDG PET understanding. Indian J Psychiatry 2011;53(1):1320.CrossRefGoogle ScholarPubMed
Aoki, Y.Orikabe, L.Takayanagi, Y.Yahata, N.Mozue, Y.Sudo, Y.et al.Volume reductions in frontopolar and left perisylvian cortices in methamphetamine induced psychosis. Schizophr Res 2013;147(2–3):355361.CrossRefGoogle ScholarPubMed
Kuepper, R.Ceccarini, J.Lataster, J.van Os, J.van Kroonenburgh, M.van Gerven, J.M.et al.Delta-9-tetrahydrocannabinol-induced dopamine release as a function of psychosis risk: 18F-fallypride positron emission tomography study. PLoS One 2013;8(7):e70378.CrossRefGoogle ScholarPubMed
Cheng, H.Skosnik, P.D.Pruce, B.J.Brumbaugh, M.S.Vollmer, J.M.Fridberg, D.J.et al.Resting-state functional magnetic resonance imaging reveals distinct brain activity in heavy cannabis users – a multi-voxel pattern analysis. J Psychopharmacol 2014;28(11):10301040.CrossRefGoogle ScholarPubMed
Howells, F.M.Uhlmann, A.Temmingh, H.Sinclair, H.Meintjes, E.Wilson, D.et al.(1)H-magnetic resonance spectroscopy ((1)H-MRS) in methamphetamine dependence and methamphetamine induced psychosis. Schizophr Res 2014;153(1–3):122128.CrossRefGoogle ScholarPubMed
Cohen, M.Rasser, P.E.Peck, G.Carr, V.J.Ward, P.B.Thompson, P.M.et al.Cerebellar grey-matter deficits, cannabis use and first-episode schizophrenia in adolescents and young adults. Int J Neuropsychopharmacol 2012;15(3):297307.CrossRefGoogle ScholarPubMed
Battistella, G.Fornari, E.Annoni, J.M.Chtioui, H.Dao, K.Fabritius, M.et al.Long-term effects of cannabis on brain structure. Neuropsychopharmacology 2014;39(9):20412048.CrossRefGoogle ScholarPubMed
Jarvis, K.DelBello, M.P.Mills, N.Elman, I.Strakowski, S.M.Adler, C.M.Neuroanatomic comparison of bipolar adolescents with and without cannabis use disorders. J Child Adolesc Psychopharmacol 2008;18(6):557563.CrossRefGoogle ScholarPubMed
Hassel, S.Almeida, J.R.Frank, E.Versace, A.Nau, S.A.Klein, C.R.et al.Prefrontal cortical and striatal activity to happy and fear faces in bipolar disorder is associated with comorbid substance abuse and eating disorder. J Affect Disord 2009;118(1–3):1927.CrossRefGoogle ScholarPubMed
Rapp, C.Bugra, H.Riecher-Rössler, A.Tamagni, C.Borgwardt, S.Effects of cannabis use on human brain structure in psychosis: a systematic review combining in vivo structural neuroimaging and post mortem studies. Curr Pharm Des 2012;18(32):50705080.CrossRefGoogle ScholarPubMed
American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders (DSM-5), 4th text rev. ed., Washington, DC: American Psychiatric Press; 2000.Google Scholar
First, M.B.Spitzer, R.L.Gibbon, M.Williams, J.B.W.Structured clinical interview for DSM-IV-TR Axis I disorders, research version, patient edition (SCID-I/P). New York, NY: Biometrics Research, New York State Psychiatric Institute; 2002.Google Scholar
First, M.B.Spitzer, R.L.Gibbon, M.Williams, J.B.W.Structured clinical interview for DSM-IV-TR Axis I disorders, research version, non-patient edition (SCID-I/NP). New York, NY: Biometrics Research, New York State Psychiatric Institute; 2002.Google Scholar
Achenbach, T.M.Rescorla, L.A.Manual for the ASEBA school-age forms & profiles. Burlington, VT: University of Vermont, Research Center for Children, Youth, & Families; 2001.Google Scholar
Overall, J.E.Gorham, D.R.The Brief Psychiatric Rating Scale. Psychol Rep 1962;10:799812.CrossRefGoogle Scholar
Talairach, J.Tournoux, P.Co-planar stereotaxic atlas of the human brain. New York, NY: Thieme; 1988.Google Scholar
Anderson, J.E.Wible, C.G.McCarley, R.W.Jakab, M.Kasai, K.Shenton, M.E.An MRI study of temporal lobe abnormalities and negative symptoms in chronic schizophrenia. Schizophr Res 2002;58(2–3):123134.CrossRefGoogle ScholarPubMed
Beauchamp, M.S.The social mysteries of the superior temporal sulcus. Trends Cogn Sci 2015;19(9):489490.CrossRefGoogle ScholarPubMed
Sanfilipo, M.Lafargue, T.Rusinek, H.Arena, L.Loneragan, C.Lautin, A.et al.Volumetric measure of the frontal and temporal lobe regions in schizophrenia: relationship to negative symptoms. Arch Gen Psychiatry 2000;57(5):471480.CrossRefGoogle ScholarPubMed
Gur, R.E.Turetsky, B.I.Cowell, P.E.Finkelman, C.Maany, V.Grossman, R.I.et al.Temporolimbic volume reductions in schizophrenia. Arch Gen Psychiatry 2000;57(8):769775.CrossRefGoogle Scholar
Brüne, M.Brüne-Cohrs, U.Theory of mind-evolution, ontogeny, brain mechanisms and psychopathology. Neurosci Biobehav Rev 2006;30(4):437455.CrossRefGoogle Scholar
Pettersson-Yeo, W.Benetti, S.Frisciata, S.Catani, M.Williams, S.C.Allen, P.et al.Does neuroanatomy account for superior temporal dysfunction in early psychosis? A multimodal MRI investigation. J Psychiatry Neurosci 2015;40(2):100107.Google ScholarPubMed
Tosato, S.Bellani, M.Bonetto, C.Ruggeri, M.Perlini, C.Lasalvia, A.et al.Is neuregulin 1 involved in determining cerebral volumes in schizophrenia? Preliminary results showing a decrease in superior temporal gyrus volume. Neuropsychobiology 2012;65(3):119125.CrossRefGoogle ScholarPubMed
Brambilla, P.Harenski, K.Nicoletti, M.Sassi, R.B.Mallinger, A.G.Frank, E.et al.MRI investigation of temporal lobe structures in bipolar patients. J Psychiatr Res 2003;37(4):287295.CrossRefGoogle ScholarPubMed
Kasai, K.Shenton, M.E.Salisbury, D.F.Onitsuka, T.Toner, S.K.Yurgelun-Todd, D.et al.Differences and similarities in insular and temporal pole MRI gray matter volume abnormalities in first-episode schizophrenia and affective psychosis. Arch Gen Psychiatry 2003;60(11):10691077.CrossRefGoogle ScholarPubMed
Adler, C.M.DelBello, M.P.Jarvis, K.Levine, A.Adams, J.Strakowski, S.M.Voxel-based study of structural changes in first-episode patients with bipolar disorder. Biol Psychiatry 2007;61(6):776781.CrossRefGoogle ScholarPubMed
Elvsåshagen, T.Westlye, L.T.Bøen, E.Hol, P.K.Andreassen, O.A.Boye, B.et al.Bipolar II disorder is associated with thinning of prefrontal and temporal cortices involved in affect regulation Bipolar Disord 2013;15(8):855864.Google Scholar
Lyoo, I.K.Hwang, J.Sim, M.Dunn, B.J.Renshaw, P.F.Advances in magnetic resonance imaging methods for the evaluation of bipolar disorder. CNS Spectr 2006;11(4):269280.CrossRefGoogle ScholarPubMed
Osuch, E.A.Ketter, T.A.Kimbrell, T.A.George, M.S.Benson, B.E.Willis, M.W.et al.Regional cerebral metabolism associated with anxiety symptoms in affective disorder patients. Biol Psychiatry 2000;48(10):10201023.CrossRefGoogle ScholarPubMed
Mitchell, R.L.Elliott, R.Barry, M.Cruttenden, A.Woodruff, P.W.Neural response to emotional prosody in schizophrenia and in bipolar affective disorder. Br J Psychiatry 2004;184:223230.CrossRefGoogle ScholarPubMed
Townsend, J.Altshuler, L.L.Emotion processing and regulation in bipolar disorder: a review. Bipolar Disord 2012;14(4):326339.CrossRefGoogle ScholarPubMed
Ersche, K.D.Jones, P.S.Williams, G.B.Turton, A.J.Robbins, T.W.Bullmore, E.T.Abnormal brain structure implicated in stimulant drug addiction. Science 2012;335(6068):601604.CrossRefGoogle ScholarPubMed
Cummings, J.L.Neuropsychiatric manifestations of right hemisphere lesions. Brain Lang 1997;57(1):2237.CrossRefGoogle ScholarPubMed
Bakhshi, K.Chance, S.A.The neuropathology of schizophrenia: a selective review of past studies and emerging themes in brain structure and cytoarchitecture. Neuroscience 2015;303:82102.CrossRefGoogle ScholarPubMed
Hirayasu, Y.Shenton, M.E.Salisbury, D.F.Dickey, C.C.Fischer, I.A.Mazzoni, P.et al.Lower left temporal lobe MRI volumes in patients with first-episode schizophrenia compared with psychotic patients with first-episode affective disorder and normal subjects. Am J Psychiatry 1998;155(10):13841391.CrossRefGoogle ScholarPubMed
Buchanan, R.W.Pearlson, G.Prefrontal cortex, structural analysis: segmenting the prefrontal cortex. Am J Psychiatry 2004;161(11):1978.CrossRefGoogle ScholarPubMed
Assaf, M.Rivkin, P.R.Kuzu, C.H.Calhoun, V.D.Kraut, M.A.Groth, K.M.et al.Abnormal object recall and anterior cingulate overactivation correlate with formal thought disorder in schizophrenia. Biol Psychiatry 2006;59(5):452459.CrossRefGoogle Scholar
Goghari, V.M.Sponheim, S.R.MacDonald, A.W. 3rd. The functional neuroanatomy of symptom dimensions in schizophrenia: a qualitative and quantitative review of a persistent question. Neurosci Biobehav Rev 2010;34(3):468486.CrossRefGoogle ScholarPubMed
Hugdahl, K.Løberg, E.M.Nygård, M.Left temporal lobe structural and functional abnormality underlying auditory hallucinations in schizophrenia. Front Neurosci 2009;3(1):3445.CrossRefGoogle Scholar
Bassett, D.S.Bullmore, E.T.Human brain networks in health and disease. Curr Opin Neurol 2009;22(4):340347.CrossRefGoogle ScholarPubMed
Horn, H.Federspiel, A.Wirth, M.Müller, T.J.Wiest, R.Wang, J.J.et al.Structural and metabolic changes in language areas linked to formal thought disorder. Br J Psychiatry 2009;194(2):130138.CrossRefGoogle ScholarPubMed
Zhang, W.Deng, W.Yao, L.Xiao, Y.Li, F.Liu, J.et al.Brain structural abnormalities in a group of never-medicated patients with long-term schizophrenia. Am J Psychiatry 2015;172(10):9951003.CrossRefGoogle Scholar
Altamura, A.C.Goikolea, J.M.Differential diagnoses and management strategies in patients with schizophrenia and bipolar disorder. Neuropsychiatr Dis Treat 2008;4(1):311317.CrossRefGoogle ScholarPubMed
Fornito, A.Yücel, M.Wood, S.J.Bechdolf, A.Carter, S.Adamson, C.et al.Anterior cingulate cortex abnormalities associated with a first psychotic episode in bipolar disorder. Br J Psychiatry 2009;194(5):426433.CrossRefGoogle ScholarPubMed
Kronhaus, D.M.Lawrence, N.S.Williams, A.M.Frangou, S.Brammer, M.J.Williams, S.C.et al.Stroop performance in bipolar disorder: further evidence for abnormalities in the ventral prefrontal cortex. Bipol Disord 2006;8(1):2839.CrossRefGoogle ScholarPubMed
Blumberg, H.P.Leung, H.C.Skudlarski, P.Lacadie, C.M.Fredericks, C.A.Harris, B.C.A functional magnetic resonance imaging study of bipolar disorder: state- and trait-related dysfunction in ventral prefrontal cortices. Arch Gen Psychiatry 2003;60(6):601609.CrossRefGoogle ScholarPubMed
Frangou, S.Kington, J.Raymont, V.Shergill, S.S.Examining ventral and dorsal prefrontal function in bipolar disorder: a functional magnetic resonance imaging study. Eur Psychiatry 2008;23(4):300308.CrossRefGoogle ScholarPubMed
Goldstein, R.Z.Volkow, N.D.Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 2011;12(11):652669.CrossRefGoogle ScholarPubMed
Seok, J.W.Lee, K.H.Sohn, S.Sohn, J.H.Neural substrates of risky decision making in individuals with Internet addiction. Aust N Z J Psychiatry 2015;49(10):923932.CrossRefGoogle ScholarPubMed
Franklin, T.R.Acton, P.D.Maldjian, J.A.Gray, J.D.Croft, J.R.Dackis, C.A.et al.Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biol Psychiatry 2002;51:134142.CrossRefGoogle ScholarPubMed
Matochik, J.A.London, E.D.Eldreth, D.A.Cadet, J.L.Bolla, K.I.Frontal cortical tissue composition in abstinent cocaine abusers: a magnetic resonance imaging study. Neuroimage 2003;19(3):10951102.CrossRefGoogle ScholarPubMed
Schwartz, D.L.Mitchell, A.D.Lahna, D.L.Luber, H.S.Huckans, M.S.Mitchell, S.H.et al.Global and local morphometric differences in recently abstinent methamphetamine- dependent individuals. Neuroimage 2010;50(4):13921401.CrossRefGoogle ScholarPubMed
Yuan, Y.Zhu, Z.Shi, J.Zou, Z.Yuan, F.Liu, Y.et al.Gray matter density negatively correlates with duration of heroin use in young lifetime heroin-dependent individuals. Brain Cogn 2009;71(3):223228.CrossRefGoogle ScholarPubMed
Raichle, M.E.MacLeod, A.M.Snyder, A.Z.Powers, W.J.Gusnard, D.A.Shulman, G.L.A default mode of brain function. Proc Natl Acad Sci U S A 2001;98(2):676682.CrossRefGoogle ScholarPubMed
Dragogna, F.Mauri, M.C.Marotta, G.Armao, F.T.Brambilla, P.Altamura, A.C.Brain metabolism in substance-induced psychosis and schizophrenia: a preliminary PET study. Neuropsychobiology 2014;70(4):195202.CrossRefGoogle ScholarPubMed
Bednarski, S.R.Zhang, S.Hong, K.I.Sinha, R.Rounsaville, B.J.Li, C.S.Deficits in default mode network activity preceding error in cocaine-dependent individuals. Drug Alcohol Depend 2011;119(3):e51e57.CrossRefGoogle ScholarPubMed
Zhou, Y.Ma, X.Wang, D.Qin, W.Zhu, J.Zhuo, C.et al.The selective impairment of resting-state functional connectivity of the lateral subregion of the frontal pole in schizophrenia. PLoS One 2015;10(3):e0119176.CrossRefGoogle Scholar
Karbasforoushan, H.Woodward, N.D.Resting-state networks in schizophrenia. Curr Top Med Chem 2012;12(21):24042414.CrossRefGoogle Scholar
Phillips, J.R.Hewedi, D.H.Eissa, A.M.Moustafa, A.A.The cerebellum and psychiatric disorders. Front Public Health 2015;3:66.CrossRefGoogle ScholarPubMed
Schutter, D.J.van Honk, J.The cerebellum in emotion regulation: a repetitive transcranial magnetic stimulation study. Cerebellum 2009;8(1):2834.CrossRefGoogle ScholarPubMed
Singer, T.Seymour, B.O’Doherty, J.Kaube, H.Dolan, R.J.Frith, C.D.Empathy for pain involves the affective but not sensory components of pain. Science 2004;303(5661):11571162.CrossRefGoogle Scholar
Brambilla, P.Harenski, K.Nicoletti, M.Mallinger, A.G.Frank, E.Kupfer, D.J.et al.MRI study of posterior fossa structures and brain ventricles in bipolar patients. J Psychiatr Res 2001;35(6):313322.CrossRefGoogle ScholarPubMed
Laidi, C.d’Albis, M.A.Wessa, M.Linke, J.Phillips, M.L.Delavest, M.et al.Cerebellar volume in schizophrenia and bipolar I disorder with and without psychotic features. Acta Psychiatr Scand 2015;131(3):223233.CrossRefGoogle ScholarPubMed
Mills, N.P.Delbello, M.P.Adler, C.M.Strakowski, S.M.MRI analysis of cerebellar vermal abnormalities in bipolar disorder. Am J Psychiatry 2005;162(8):15301532.CrossRefGoogle ScholarPubMed
Sani, G.Chiapponi, C.Piras, F.Ambrosi, E.Simonetti, A.Danese, E.et al.Gray and white matter trajectories in patients with bipolar disorder. Bipolar Disord 2016;18(1):5262.CrossRefGoogle ScholarPubMed
Vazquez-Sanroman, D.Leto, K.Cerezo-Garcia, M.Carbo-Gas, M.Sanchis-Segura, C.Carulli, D.et al.The cerebellum on cocaine: plasticity and metaplasticity. Addict Biol 2015;20(5):941955.CrossRefGoogle ScholarPubMed
Steinmetz, A.B.Edwards, C.R.Vollmer, J.M.Erickson, M.A.O’Donnell, B.F.Hetrick, W.P.et al.Examining the effects of former cannabis use on cerebellum-dependent eyeblink conditioning in humans. Psychopharmacology (Berl) 2012;221(1):133141.CrossRefGoogle ScholarPubMed
Palomino, A.Pavón, F.J.Blanco-Calvo, E.Serrano, A.Arrabal, S.Rivera, P.et al.Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum. Front Integr Neurosci 2014;8:22.CrossRefGoogle ScholarPubMed
Moreno-López, L.Perales, J.C.van Son, D.Albein-Urios, N.Soriano-Mas, C.Martinez-Gonzalez, J.M.et al.Cocaine use severity and cerebellar gray matter are associated with reversal learning deficits in cocaine-dependent individuals. Addict Biol 2015;20(3):546556.CrossRefGoogle ScholarPubMed
Anderson, C.M.Maas, L.C.Frederick, B.D.Bendor, J.T.Spencer, T.J.Livni, E.et al.Cerebellar vermis involvement in cocaine-related behaviors. Neuropsychopharmacology 2006;31(6):13181326.CrossRefGoogle ScholarPubMed
Sim, M.E.Lyoo, I.K.Streeter, C.C.Covell, J.Sarid-Segal, O.Ciraulo, D.A.et al.Cerebellar gray matter volume correlates with duration of cocaine use in cocaine-dependent subjects. Neuropsychopharmacology 2007;32(10):22292237.CrossRefGoogle ScholarPubMed
Ha, T.H.Ha, K.Kim, J.H.Choi, J.E.Regional brain gray matter abnormalities in patients with bipolar II disorder: a comparison study with bipolar I patients and healthy controls. Neurosci Lett 2009;456(1):4448.CrossRefGoogle ScholarPubMed
Delvecchio, G.Fossati, P.Boyer, P.Brambilla, P.Falkai, P.Gruber, O.et al.Common and distinct neural correlates of emotional processing in bipolar disorder and major depressive disorder: a voxel-based meta-analysis of functional magnetic resonance imaging studies. Eur Neuropsychopharmacol 2012;22(2):100113.CrossRefGoogle ScholarPubMed
Perico, C.A.-M.Skaf, C.R.Yamada, A.et al.Relationship between regional cerebral blood flow and separate symptom clusters of major depression: a single-photon emission computed tomography study using statistical parametric mapping. Neurosci Lett 2005;384(3):265270.CrossRefGoogle ScholarPubMed
Matochik, J.A.Eldreth, D.A.Cadet, J.L.Bolla, K.I.Altered brain tissue composition in heavy marijuana users. Drug Alcohol Depend 2005;77(1):2330.CrossRefGoogle ScholarPubMed
Prasad, K.M.Rohm, B.R.Keshavan, M.S.Parahippocampal gyrus in first-episode psychotic disorders: a structural magnetic resonance imaging study. Prog Neuropsychopharmacol Biol Psychiatry 2004;28(4):651658.CrossRefGoogle ScholarPubMed
Kawasaki, Y.Maeda, Y.Urata, K.Higashima, M.Yamaguchi, N.Suzuki, M.et al.A quantitative magnetic resonance imaging study of patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 1993;242(5):268272.CrossRefGoogle ScholarPubMed
Shenton, M.E.Kikinis, R.Jolesz, F.A.Pollak, S.D.LeMay, M.Wible, C.G.et al.Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study. N Engl J Med 1992;327(9):604612.CrossRefGoogle ScholarPubMed
Haber, S.N.Knutson, B.The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacol 2010;35(1):426.CrossRefGoogle ScholarPubMed
Adinoff, B.Neurobiologic processes in drug reward and addiction. Harv Rev Psychiatry 2004;12(6):305320.CrossRefGoogle ScholarPubMed
Volkow, N.D.Gillespie, H.Mullani, N.Tancredi, L.Grant, C.Valentine, A.et al.Brain glucose metabolism in chronic marijuana users at baseline and during marijuana intoxication. Psychiatry Res 1996;67(1):2938.CrossRefGoogle ScholarPubMed
Volkow, N.D.Wang, G.J.Fowler, J.S.Hitzemann, R.Angrist, B.Gatley, S.J.et al.Association of methylpheni- date-induced craving with changes in right striato-orbitofrontal metabolism in cocaine abusers: implications in addiction. Am J Psychiatry 1999;156(1):1926.CrossRefGoogle Scholar
Oleson, E.B.Cheer, J.F.A brain on cannabinoids: the role of dopamine release in reward seeking. Cold Spring Harb Perspect Med 2012;2(8):a012229.CrossRefGoogle ScholarPubMed
Breiter, H.C.Gollub, R.L.Weisskoff, R.M.Kennedy, D.N.Makris, N.Berke, J.D.et al.Acute effects of cocaine on human brain activity and emotion. Neuron 1997;19(3):591611.CrossRefGoogle ScholarPubMed
Kobza, S.Bellebaum, C.Processing of action- but not stimulus-related prediction errors differs between active and observational feedback learning. Neuropsychologia 2015;66:7587.CrossRefGoogle Scholar
Garner, B.R.Godley, S.H.Funk, R.R.Dennis, M.L.Smith, J.E.Godley, M.D.Exposure to Adolescent Community Reinforcement Approach treatment procedures as a mediator of the relationship between adolescent substance abuse treatment retention and outcome. J Subst Abuse Treat 2009;36(3):252264.CrossRefGoogle ScholarPubMed
Hommer, D.W.Bjork, J.M.Gilman, J.M.Imaging brain response to reward in addictive disorders. Ann N Y Acad Sci 2011;1216:5061.CrossRefGoogle ScholarPubMed
Probst, C.C.van Eimeren, T.The functional anatomy of impulse control disorders. Curr Neurol Neurosci Rep 2013;13(10):386.CrossRefGoogle ScholarPubMed
Kohno, M.Morales, A.M.Ghahremani, D.G.Hellemann, G.London, E.D.Risky decision making, prefrontal cortex, and mesocorticolimbic functional connectivity in methamphetamine dependence. JAMA Psychiatry 2014;71(7):812820.CrossRefGoogle ScholarPubMed
Yip, S.W.DeVito, E.E.Kober, H.Worhunsky, P.D.Carroll, K.M.Potenza, M.N.Pretreatment measures of brain structure and reward-processing brain function in cannabis dependence: an exploratory study of relationships with abstinence during behavioral treatment. Drug Alcohol Depend 2014;140:3341.CrossRefGoogle ScholarPubMed
Akyuz, N.Kekatpure, M.V.Liu, J.Sheinkopf, S.J.Quinn, B.T.Lala, M.D.et al.Structural brain imaging in children and adolescents following prenatal cocaine exposure: preliminary longitudinal findings. Dev Neurosci 363–42014 316328CrossRefGoogle ScholarPubMed
Submit a response

Comments

No Comments have been published for this article.