Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T17:35:28.356Z Has data issue: false hasContentIssue false

The SLC6A1 Mutation Schizophrenia case — A Comprehensive Case Study With iPSC Generation

Published online by Cambridge University Press:  27 August 2024

V. Mikhailova
Affiliation:
1Clinical Genetics Laboratory, Mental Health Research Center
N. Kondratyev
Affiliation:
1Clinical Genetics Laboratory, Mental Health Research Center
M. Alfimova
Affiliation:
1Clinical Genetics Laboratory, Mental Health Research Center
V. Kaleda
Affiliation:
1Clinical Genetics Laboratory, Mental Health Research Center
T. Lezheiko
Affiliation:
1Clinical Genetics Laboratory, Mental Health Research Center
M. Ublinsky
Affiliation:
2Department of Radiation Diagnostics, Clinical and Research Institute of Emergency Pediatric Surgery and Trauma
V. Ushakov
Affiliation:
3Institute for Advanced Brain Research Lomonosov Moscow State University 4N.A. Alekseyev Psychiatric Clinical Hospital No.1 5National Research Nuclear University MEPhI
I. Lebedeva
Affiliation:
1Clinical Genetics Laboratory, Mental Health Research Center
A. Galiakberova
Affiliation:
6Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University 7Faculty of Biology, Lomonosov Moscow State University
A. Artyuhov
Affiliation:
6Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University
E. Dashinimaev
Affiliation:
6Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University 8Department of Bioinformatics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences 9Moscow Institute of Physics and Technology (State University), Moscow, Russian Federation
V. Golimbet*
Affiliation:
1Clinical Genetics Laboratory, Mental Health Research Center
*
*Corresponding author.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Introduction

The main finding of a large-scale collaborative study (Rees et al. Nat Neurosci 2020;23(2) 179-184), which focused on de novo mutations in schizophrenia, was the discovery of an enrichment of these mutations in the SLC6A1 gene. This gene encodes the gamma-aminobutyric acid (GABA) transporter GAT1, thereby encouraging further research into novel schizophrenia targets within the GABA pathway. However, the gene was not highlighted in recent schizophrenia genetic studies, while typically pathogenic SLC6A1 mutations result in epilepsy, motor dysfunction, autistic spectrum disorder (ASD) and developmental delay. The absence of genetic replication for SLC6A1’s involvement in schizophrenia and the differing clinical spectrum for SLC6A1 mutations led us to study in depth one of the only three original probands from the Rees et al. 2020 study.

Objectives

In our comprehensive case study, we delved deep into the relationship between the SLC6A1 mutation and schizophrenia.

Methods

Our subject, a patient who first presented with acute mania symptoms at age 15 and was later diagnosed with schizophrenia, carried the SLC6A1 Arg211Cys mutation. Over a detailed 25-year follow-up, we conducted an array of assessments and tests, including cognitive testing, personality assessments, EEG, and 1H-MRS.

Results

Notably, we discovered abnormal GABA levels, potentially indicating a dysfunction in GABA reuptake, adding a new layer of complexity to our understanding. Further analysis revealed a significant correlation between the patient’s clinical picture and a polygenic background, rather than the SLC6A1 mutation. Despite having a high polygenic risk score for bipolar disorder, the dominant features of his condition were more representative of schizophrenia. Interestingly, neither the patient nor his father, who also showed a higher BP PRS, had a diagnosis of bipolar disorder. The pathogenic significance of the mutation warrants investigation in cells of neuronal origin. We generated induced pluripotent stem cells (iPSC) from the patient and his parents. This approach provides us with a platform for future investigations into the pathogenic significance of the mutation in neuronal cells. The Human Pluripotent Stem Cell Registry accession numbers of those cells are MHRCCGi001-A (patient), MHRCCGi005-A (mother) and MHRCCGi004-A (father).

Conclusions

In the presented case the clinical picture is rather explained by the polygenic background than by the SLC6A1 Arg211Cys mutation. The study is supported by Russian Science Foundation, grant 21-15-00124 (https://rscf.ru/project/21-15-00124)

Disclosure of Interest

None Declared

Type
Abstract
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of European Psychiatric Association
Submit a response

Comments

No Comments have been published for this article.