Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T11:11:58.046Z Has data issue: false hasContentIssue false

A Risk Prediction Model of PSD in Stroke Survivors

Published online by Cambridge University Press:  15 April 2020

R. Liu
Affiliation:
School of Information Science and Engineering Southeast University, Southeast University, Nanjing, China
Y.Y. Yue
Affiliation:
Affiliated ZhongDa Hospital of Southeast University Medical School of Southeast University, Southeast University, Nanjing, China
H. Jiang
Affiliation:
Affiliated ZhongDa Hospital of Southeast University Medical School of Southeast University, Southeast University, Nanjing, China
J. Lu
Affiliation:
School of Information Science and Engineering Southeast University, Southeast University, Nanjing, China
Y.G. Yuan
Affiliation:
Affiliated ZhongDa Hospital of Southeast University Medical School of Southeast University, Southeast University, Nanjing, China
Q. Wang
Affiliation:
School of Information Science and Engineering Southeast University, Southeast University, Nanjing, China

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objectives

Finding the prediction factors for the risks of post-stroke depression (PSD) is important to stroke survivors. However, most existing studies focused only on general clinical data, which limited the predictive ability. To improve the predictive ability, this study proposed a comprehensive PSD risk prediction model with social psychological factors, neurological, cognitive functional factors and general clinical factors.

Methods

The study recruited 188 stroke patients. Patients were diagnosed by DSM-IV criteria. Predictors were collected within a week after stroke. Boosted regression trees (BRT) was used to classify these predictors, and then a predictive model was constructed based on the selected predictors. The receiver operating characteristic (ROC) curve was used to determine the performance of the predictive model .

Results

The risk prediction model was constructed with 6 factors: Body Mass Index (BMI), cerebral infraction history (CI), Social Support Rating Scale (SSRS), Eysenck Personality Questionnaire-Neuroticism (EPQ-N), factor 1 of the 20 items Toronto Alexithymia Scale (TAS-F1) and Snaith-Hamilton-Pleasure Scale (SHARPS). In the contribution of risk prediction factors, social psychological factors was more than 0.60. ROC curve of prediction model was 0.826 (p<0.001; 95% CI) and the accuracy of prediction was 0.81 (p<0.001). Transforming the prediction model to a tree diagram, it was convenient to clinic operation.

Conclusions

A PSD risk prediction model with good prediction performance was constructed to achieve diagnose concisely and clearly. The social psychological factors play an important role for diagnosing PSD in the early period.

Type
Article: 0712
Copyright
Copyright © European Psychiatric Association 2015
Submit a response

Comments

No Comments have been published for this article.