Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T04:38:11.879Z Has data issue: false hasContentIssue false

Resting-state functional connectivity of emotion regulation networks in euthymic and non-euthymic bipolar disorder patients

Published online by Cambridge University Press:  23 March 2020

G. Rey*
Affiliation:
Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, University of Geneva, Geneva, Switzerland
C Piguet
Affiliation:
Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, University of Geneva, Geneva, Switzerland Department of Mental Health and Psychiatry, Division of Psychiatric Specialties, Mood Disorder Program, Geneva University Hospitals, Geneva, Switzerland
A Benders
Affiliation:
Department of Psychology, University of Bonn, Bonn, Germany Institute of Neuroscience and Medicine [INM-1], Research Center Jülich, Jülich, Germany
S Favre
Affiliation:
Department of Mental Health and Psychiatry, Division of Psychiatric Specialties, Mood Disorder Program, Geneva University Hospitals, Geneva, Switzerland
SB Eickhoff
Affiliation:
Institute of Neuroscience and Medicine [INM-1], Research Center Jülich, Jülich, Germany Institute for Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
J.-M. Aubry
Affiliation:
Department of Mental Health and Psychiatry, Division of Psychiatric Specialties, Mood Disorder Program, Geneva University Hospitals, Geneva, Switzerland
P Vuilleumier
Affiliation:
Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, University of Geneva, Geneva, Switzerland Department of Neurology, Geneva University Hospitals, Geneva, Switzerland
*
*Corresponding author. Laboratory for neurology and imaging of cognition, department of Neuroscience, university of Geneva, 1, rue Michel Servet, 1211 Geneva, Switzerland. Tel.: +41 22 379 0808; fax: +41 22 379 5402. E-mail address:[email protected] (G. Rey).
Get access

Abstract

Background

Previous functional magnetic resonance imaging studies in bipolar disorder (BD) have evidenced changes in functional connectivity (FC) in brain areas associated with emotion processing, but how these changes vary with mood state and specific clinical symptoms is not fully understood.

Methods

We investigated resting-state FC between a priori regions of interest (ROIs) from the default-mode network and key structures for emotion processing and regulation in 27 BD patients and 27 matched healthy controls. We further compared connectivity patterns in subgroups of 15 euthymic and 12 non-euthymic patients and tested for correlations of the connectivity strength with measures of mood, anxiety, and rumination tendency. No correction for multiple comparisons was applied given the small population sample and pre-defined target ROIs.

Results

Overall, regardless of mood state, BD patients exhibited increased FC of the left amygdala with left sgACC and PCC, relative to controls. In addition, non-euthymic BD patients showed distinctive decrease in FC between right amygdala and sgACC, whereas euthymic patients showed lower FC between PCC and sgACC. Euthymic patients also displayed increased FC between sgACC and right VLPFC. The sgACC–PCC and sgACC–left amygdala connections were modulated by rumination tendency in non-euthymic patients, whereas the sgACC-VLPFC connection was modulated by both the current mood and tendency to ruminate.

Conclusions

Our results suggest that sgACC-amygdala coupling is critically affected during mood episodes, and that FC of sgACC play a pivotal role in mood normalization through its interactions with the VLPFC and PCC. However, these preliminary findings require replication with larger samples of patients.

Type
Original article
Copyright
Copyright © European Psychiatry 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Strakowski, SMAdler, CMAlmeida, JAltshuler, LLBlumberg, HPChang, KDet al.The functional neuroanatomy of bipolar disorder: a consensus model. Bipolar Disord 2012;14: 313325http://dx.doi.org/10.1111/j.1399-5618.2012.01022.xCrossRefGoogle ScholarPubMed
Rey, GDesseilles, MFavre, SDayer, APiguet, CAubry, J.-M.et al.Modulation of brain response to emotional conflict as a function of current mood in bipolar disorder: preliminary findings from a follow-up state-based fMRI study. Psychiatry Res 2014;223: 8493http://dx.doi.org/10.1016/j.pscychresns.2014.04.016CrossRefGoogle ScholarPubMed
Meda, SAGill, AStevens, MCLorenzoni, RPGlahn, DCCalhoun, VDet al.Differences in resting-state functional magnetic resonance imaging functional network connectivity between schizophrenia and psychotic bipolar probands and their unaffected first-degree relatives. Biol Psychiatry 2012;71: 881889http://dx.doi.org/10.1016/j.biopsych.2012.01.025CrossRefGoogle ScholarPubMed
Yip, SWMackay, CEGoodwin, GMIncreased temporo-insular engagement in unmedicated bipolar II disorder: an exploratory resting state study using independent component analysis. Bipolar Disord 201410.1111/bdi.12206CrossRefGoogle ScholarPubMed
Das, PCalhoun, VMalhi, GSBipolar and borderline patients display differential patterns of functional connectivity among resting state networks. NeuroImage 201410.1016/j.neuroimage.2014.04.062CrossRefGoogle ScholarPubMed
Lois, GLinke, JWessa, MAltered functional connectivity between emotional and cognitive resting state networks in euthymic bipolar I disorder patients. PloS One 9 2014 e10782910.1371/journal.pone.0107829CrossRefGoogle ScholarPubMed
Chai, XJWhitfield-Gabrieli, SShinn, AKGabrieli, JDENieto-Castañón, AMcCarthy, JMet al.Abnormal medial prefrontal cortex resting-state connectivity in bipolar disorder and schizophrenia. Neuropsychopharmacology 2011;36: 20092017http://dx.doi.org/10.1038/npp.2011.88CrossRefGoogle Scholar
Chepenik, LGRaffo, MHampson, MLacadie, CWang, FJones, MMet al.Functional connectivity between ventral prefrontal cortex and amygdala at low frequency in the resting state in bipolar disorder. Psychiatry Res 2010;182: 207210http://dx.doi.org/10.1016/j.pscychresns.2010.04.002CrossRefGoogle Scholar
Favre, PBaciu, MPichat, CBougerol, TPolosan, MfMRI evidence for abnormal resting-state functional connectivity in euthymic bipolar patients. J Affect Disord 2014;165: 182189http://dx.doi.org/10.1016/j.jad.2014.04.054CrossRefGoogle ScholarPubMed
Liu, HTang, YWomer, FFan, GLu, TDriesen, Net al.Differentiating patterns of amygdala-frontal functional connectivity in schizophrenia and bipolar disorder. Schizophr Bull 201310.1093/schbul/sbt044Google ScholarPubMed
Magioncalda, PMartino, MConio, BEscelsior, APiaggio, NPresta, Aet al.Functional connectivity and neuronal variability of resting state activity in bipolar disorder-reduction and decoupling in anterior cortical midline structures. Hum Brain Mapp 201410.1002/hbm.22655Google ScholarPubMed
Torrisi, SMoody, TDVizueta, NThomason, MEMonti, MMTownsend, JDet al.Differences in resting corticolimbic functional connectivity in bipolar I euthymia. Bipolar Disord 2013;15: 156166http://dx.doi.org/10.1111/bdi.12047CrossRefGoogle ScholarPubMed
Anticevic, ASavic, ARepovs, GYang, GMcKay, DRSprooten, Eet al.Ventral anterior cingulate connectivity distinguished nonpsychotic bipolar illness from psychotic bipolar disorder and schizophrenia. Schizophr Bull 2015;41: 133143http://dx.doi.org/10.1093/schbul/sbu051CrossRefGoogle Scholar
Anand, ALi, YWang, YLowe, MJDzemidzic, MResting state corticolimbic connectivity abnormalities in unmedicated bipolar disorder and unipolar depression. Psychiatry Res 2009;171: 189198http://dx.doi.org/10.1016/j.pscychresns.2008.03.012CrossRefGoogle ScholarPubMed
Anticevic, ACole, MWMurray, JDCorlett, PRWang, X.-J.Krystal, JHThe role of default network deactivation in cognition and disease. Trends Cogn Sci 2012;16: 584592http://dx.doi.org/10.1016/j.tics.2012.10.008CrossRefGoogle ScholarPubMed
Drevets, WCSavitz, JTrimble, MThe subgenual anterior cingulate cortex in mood disorders. CNS Spectr 2008;13: 663681.CrossRefGoogle ScholarPubMed
Etkin, AEgner, TKalisch, REmotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 2011;15: 8593http://dx.doi.org/10.1016/j.tics.2010.11.004CrossRefGoogle ScholarPubMed
Wager, TDDavidson, MLHughes, BLLindquist, MAOchsner, KNPrefrontal-subcortical pathways mediating successful emotion regulation. Neuron 2008;59: 10371050http://dx.doi.org/10.1016/j.neuron.2008.09.006CrossRefGoogle ScholarPubMed
Cerullo, MAFleck, DEEliassen, JCSmith, MSDelBello, MPAdler, CMet al.A longitudinal functional connectivity analysis of the amygdala in bipolar I disorder across mood states. Bipolar Disord 2012;14: 175184http://dx.doi.org/10.1111/j.1399-5618.2012.01002.xCrossRefGoogle ScholarPubMed
Strakowski, SMIntegration and consolidation – a neurophysiological model of bipolar disorder. Bipolar Brain Integrating Neuroimaging Genet New York: Oxford University Press; 2012 253274.CrossRefGoogle Scholar
Nolen-Hoeksema, SMorrow, JFredrickson, BLResponse styles and the duration of episodes of depressed mood. J Abnorm Psychol 1993;102: 2028.CrossRefGoogle ScholarPubMed
Nolen-Hoeksema, SWisco, BELyubomirsky, SRethinking rumination. Perspect Psychol Sci 2008;3: 400424http://dx.doi.org/10.1111/j.1745-6924.2008.00088.xCrossRefGoogle ScholarPubMed
Berman, MGPeltier, SNee, DEKross, EDeldin, PJJonides, JDepression, rumination and the default network. Soc Cogn Affect Neurosci 2011;6: 548555http://dx.doi.org/10.1093/scan/nsq080CrossRefGoogle ScholarPubMed
Freton, MLemogne, CDelaveau, PGuionnet, SWright, EWiernik, Eet al.The dark side of self-focus: brain activity during self-focus in low and high brooders. Soc Cogn Affect Neurosci 201310.1093/scan/nst178Google ScholarPubMed
Hamilton, JPFurman, DJChang, CThomason, MEDennis, EGotlib, IHDefault-mode and task-positive network activity in major depressive disorder: implications for adaptive and maladaptive rumination. Biol Psychiatry 2011;70: 327333http://dx.doi.org/10.1016/j.biopsych.2011.02.003CrossRefGoogle ScholarPubMed
Berman, MGMisic, BBuschkuehl, MKross, EDeldin, PJPeltier, Set al.Does resting-state connectivity reflect depressive rumination? A tale of two analyses. NeuroImage 103C 2014 26727910.1016/j.neuroimage.2014.09.027CrossRefGoogle Scholar
Mandell, DSiegle, GJShutt, LFeldmiller, JThase, MENeural substrates of trait ruminations in depression. J Abnorm Psychol 2014;123: 3548http://dx.doi.org/10.1037/a0035834CrossRefGoogle ScholarPubMed
Ghaznavi, SDeckersbach, TRumination in bipolar disorder: evidence for an unquiet mind. Biol Mood Anxiety Disord 2 2012 210.1186/2045-5380-2-2CrossRefGoogle ScholarPubMed
Sheehan, DVLecrubier, YSheehan, KHAmorim, PJanavs, JWeiller, Eet al.The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998;59(Suppl 20):2233 [quiz 34–57]Google ScholarPubMed
Svanborg, PAsberg, MA new self-rating scale for depression and anxiety states based on the Comprehensive Psychopathological Rating Scale. Acta Psychiatr Scand 1994;89: 2128.CrossRefGoogle ScholarPubMed
Bondolfi, GJermann, FRouget, BWGex-Fabry, MMcQuillan, ADupont-Willemin, Aet al.Self- and clinician-rated Montgomery-Asberg Depression Rating Scale: evaluation in clinical practice. J Affect Disord 2010;121: 268272http://dx.doi.org/10.1016/j.jad.2009.06.037CrossRefGoogle ScholarPubMed
Young, RCBiggs, JTZiegler, VEMeyer, DAA rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry J Ment Sci 1978;133: 429435.CrossRefGoogle ScholarPubMed
Favre, SAubry, J.-M.Gex-Fabry, MRagama-Pardos, EMcQuillan, ABertschy, G[Translation and validation of a French version of the Young Mania Rating Scale (YMRS)]. Encephale 2003;29: 499505.Google Scholar
Beck, ATEpstein, NBrown, GSteer, RAAn inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol 1988;56: 893897.CrossRefGoogle ScholarPubMed
Treynor, WGonzalez, RNolen-Hoeksema, SRumination reconsidered: a psychometric analysis. Cogn Ther Res 2003;27: 247259http://dx.doi.org/10.1023/A:1023910315561CrossRefGoogle Scholar
Eickhoff, SBStephan, KEMohlberg, HGrefkes, CFink, GRAmunts, Ket al.A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 2005;25: 13251335http://dx.doi.org/10.1016/j.neuroimage.2004.12.034CrossRefGoogle ScholarPubMed
Ashburner, JFriston, KJUnified segmentation. NeuroImage 2005;26: 839851http://dx.doi.org/10.1016/j.neuroimage.2005.02.018CrossRefGoogle ScholarPubMed
Satterthwaite, TDElliott, MAGerraty, RTRuparel, KLoughead, JCalkins, MEet al.An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage 2013;64: 240256http://dx.doi.org/10.1016/j.neuroimage.2012.08.052CrossRefGoogle ScholarPubMed
Fox, MDRaichle, MESpontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007;8: 700711http://dx.doi.org/10.1038/nrn2201CrossRefGoogle ScholarPubMed
Johansen-Berg, HGutman, DABehrens, TEJMatthews, PMRushworth, MFSKatz, Eet al.Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cereb Cortex 2008;18: 13741383http://dx.doi.org/10.1093/cercor/bhm167CrossRefGoogle ScholarPubMed
Pezawas, LMeyer-Lindenberg, ADrabant, EMVerchinski, BAMunoz, KEKolachana, BSet al.5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 2005;8: 828834http://dx.doi.org/10.1038/nn1463CrossRefGoogle ScholarPubMed
Delgado, MRNearing, KILedoux, JEPhelps, EANeural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron 2008;59: 829838http://dx.doi.org/10.1016/j.neuron.2008.06.029CrossRefGoogle Scholar
Costafreda, SGMcCann, PSaker, PCole, JHCohen-Woods, SFarmer, AEet al.Modulation of amygdala response and connectivity in depression by serotonin transporter polymorphism and diagnosis. J Affect Disord 2013;150: 96103http://dx.doi.org/10.1016/j.jad.2013.02.028CrossRefGoogle ScholarPubMed
Herringa, RJBirn, RMRuttle, PLBurghy, CAStodola, DEDavidson, RJet al.Childhood maltreatment is associated with altered fear circuitry and increased internalizing symptoms by late adolescence. Proc Natl Acad Sci U S A 2013;110: 1911919124http://dx.doi.org/10.1073/pnas.1310766110CrossRefGoogle ScholarPubMed
Coombs, GLoggia, MLGreve, DNHolt, DJAmygdala perfusion is predicted by its functional connectivity with the ventromedial prefrontal cortex and negative affect. PloS One 9 2014 e9746610.1371/journal.pone.0097466CrossRefGoogle ScholarPubMed
Kim, MJGee, DGLoucks, RADavis, FCWhalen, PJAnxiety dissociates dorsal and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cereb Cortex 2011;21: 16671673http://dx.doi.org/10.1093/cercor/bhq237CrossRefGoogle ScholarPubMed
Savitz, JBPrice, JLDrevets, WCNeuropathological and neuromorphometric abnormalities in bipolar disorder: view from the medial prefrontal cortical network. Neurosci Biobehav Rev 2014;42: 132147http://dx.doi.org/10.1016/j.neubiorev.2014.02.008CrossRefGoogle ScholarPubMed
Singh, MKChang, KDKelley, RGSaggar, MReiss, LAGotlib, IHEarly signs of anomalous neural functional connectivity in healthy offspring of parents with bipolar disorder. Bipolar Disord 201410.1111/bdi.12221CrossRefGoogle ScholarPubMed
Margulies, DSKelly, AMCUddin, LQBiswal, BBCastellanos, FXMilham, MPMapping the functional connectivity of anterior cingulate cortex. NeuroImage 2007;37: 579588http://dx.doi.org/10.1016/j.neuroimage.2007.05.019CrossRefGoogle ScholarPubMed
Roy, AKShehzad, ZMargulies, DSKelly, AMCUddin, LQGotimer, Ket al.Functional connectivity of the human amygdala using resting state fMRI. NeuroImage 2009;45: 614626http://dx.doi.org/10.1016/j.neuroimage.2008.11.030CrossRefGoogle ScholarPubMed
Phelps, EADelgado, MRNearing, KILeDoux, JEExtinction learning in humans: role of the amygdala and vmPFC. Neuron 2004;43: 897905http://dx.doi.org/10.1016/j.neuron.2004.08.042CrossRefGoogle ScholarPubMed
Vrtička, PSander, DVuilleumier, PEffects of emotion regulation strategy on brain responses to the valence and social content of visual scenes. Neuropsychologia 2011;49: 10671082http://dx.doi.org/10.1016/j.neuropsychologia.2011.02.020CrossRefGoogle ScholarPubMed
Hofstetter, CAchaibou, AVuilleumier, PReactivation of visual cortex during memory retrieval: content specificity and emotional modulation. NeuroImage 2012;60: 17341745http://dx.doi.org/10.1016/j.neuroimage.2012.01.110CrossRefGoogle ScholarPubMed
Eryilmaz, HVan De Ville, DSchwartz, SVuilleumier, PImpact of transient emotions on functional connectivity during subsequent resting state: a wavelet correlation approach. NeuroImage 2011;54: 24812491http://dx.doi.org/10.1016/j.neuroimage.2010.10.021CrossRefGoogle ScholarPubMed
Veer, IMOei, NYLSpinhoven, Pvan Buchem, MAElzinga, BMRombouts, S.A.R.B.Endogenous cortisol is associated with functional connectivity between the amygdala and medial prefrontal cortex. Psychoneuroendocrinology 2012;37: 10391047http://dx.doi.org/10.1016/j.psyneuen.2011.12.001CrossRefGoogle ScholarPubMed
Quaedflieg, C.W.E.M.van de Ven, VMeyer, TSiep, NMerckelbach, HSmeets, TTemporal dynamics of stress-induced alternations of intrinsic amygdala connectivity and neuroendocrine levels. PloS One 10 2015 e012414110.1371/journal.pone.0124141CrossRefGoogle ScholarPubMed
Hahn, AStein, PWindischberger, CWeissenbacher, ASpindelegger, CMoser, Eet al.Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder. NeuroImage 2011;56: 881889http://dx.doi.org/10.1016/j.neuroimage.2011.02.064CrossRefGoogle ScholarPubMed
Fang, ZZhu, SGillihan, SJKorczykowski, MDetre, JARao, HSerotonin transporter genotype modulates functional connectivity between amygdala and PCC/PCu during mood recovery. Front Hum Neurosci 7 2013 70410.3389/fnhum.2013.00704CrossRefGoogle ScholarPubMed
Greicius, MDFlores, BHMenon, VGlover, GHSolvason, HBKenna, Het al.Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 2007;62: 429437http://dx.doi.org/10.1016/j.biopsych.2006.09.020CrossRefGoogle ScholarPubMed
Kohn, NEickhoff, SBScheller, MLaird, ARFox, PTHabel, UNeural network of cognitive emotion regulation--an ALE meta-analysis and MACM analysis. NeuroImage 2014;87: 345355http://dx.doi.org/10.1016/j.neuroimage.2013.11.001CrossRefGoogle ScholarPubMed
Ochsner, KNSilvers, JABuhle, JTFunctional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann N Y Acad Sci 1251 2012 E1E2410.1111/j.1749-6632.2012.06751.xCrossRefGoogle ScholarPubMed
Seeley, WWMenon, VSchatzberg, AFKeller, JGlover, GHKenna, Het al.Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007;27: 23492356http://dx.doi.org/10.1523/JNEUROSCI.5587-06.2007CrossRefGoogle ScholarPubMed
Piguet, CDesseilles, MSterpenich, VCojan, YBertschy, GVuilleumier, PNeural substrates of rumination tendency in non-depressed individuals. Biol Psychol 103C 2014 19520210.1016/j.biopsycho.2014.09.005CrossRefGoogle Scholar
Piguet, CDayer, AKosel, MDesseilles, MVuilleumier, PBertschy, GPhenomenology of racing and crowded thoughts in mood disorders: a theoretical reappraisal. J Affect Disord 2010;121: 189198http://dx.doi.org/10.1016/j.jad.2009.05.006CrossRefGoogle ScholarPubMed
Hafeman, DMChang, KDGarrett, ASSanders, EMPhillips, MLEffects of medication on neuroimaging findings in bipolar disorder: an updated review. Bipolar Disord 2012;14: 375410http://dx.doi.org/10.1111/j.1399-5618.2012.01023.xCrossRefGoogle ScholarPubMed
Holtzheimer, PEMayberg, HSNeuromodulation for treatment-resistant depression. F1000. Med Rep 4 2012 2210.3410/M4-22Google Scholar
Davey, CGYücel, MAllen, NBHarrison, BJTask-related deactivation and functional connectivity of the subgenual cingulate cortex in major depressive disorder. Front Psychiatry 3 2012 1410.3389/fpsyt.2012.00014CrossRefGoogle ScholarPubMed
Bluhm, RWilliamson, PLanius, RThéberge, JDensmore, MBartha, Ret al.Resting state default-mode network connectivity in early depression using a seed region-of-interest analysis: decreased connectivity with caudate nucleus. Psychiatry Clin Neurosci 2009;63: 754761http://dx.doi.org/10.1111/j.1440-1819.2009.02030.xCrossRefGoogle ScholarPubMed
Qin, PNorthoff, GHow is our self related to midline regions and the default-mode network?. NeuroImage 2011;57: 12211233http://dx.doi.org/10.1016/j.neuroimage.2011.05.028CrossRefGoogle Scholar
Whitfield-Gabrieli, SMoran, JMNieto-Castañón, ATriantafyllou, CSaxe, RGabrieli, JDEAssociations and dissociations between default and self-reference networks in the human brain. NeuroImage 2011;55: 225232http://dx.doi.org/10.1016/j.neuroimage.2010.11.048CrossRefGoogle ScholarPubMed
Delvecchio, GFossati, PBoyer, PBrambilla, PFalkai, PGruber, Oet al.Common and distinct neural correlates of emotional processing in Bipolar Disorder and Major Depressive Disorder: a voxel-based meta-analysis of functional magnetic resonance imaging studies. Eur Neuropsychopharmacol 2012;22: 100113 10.1016/j.euroneuro.2011.07.003CrossRefGoogle ScholarPubMed
Supplementary material: File

Rey et al. supplementary material

Supplementary materials

Download Rey et al. supplementary material(File)
File 474.7 KB
Submit a response

Comments

No Comments have been published for this article.