No CrossRef data available.
Published online by Cambridge University Press: 23 March 2020
Tourette syndrome (TS) has long been thought to involve dopaminergic disturbances, given the effectiveness of antipsychotics in diminishing tics. Molecular-imaging studies have, by and large, confirmed that there are specific alterations in the dopaminergic system in TS. In parallel, multiple lines of evidence have implicated the motor cortico-basal ganglia-thalamo-cortical (CBGTC) loop in TS. Finally, several studies demonstrate that patients with TS exhibit exaggerated habit learning. This talk will present a computational theory of TS that ties together these multiple findings.
The computational theory builds on computational reinforcement-learning models, and more specifically on a recent model of the role of the direct and indirect basal-ganglia pathways in learning from positive and negative outcomes, respectively.
A model defined by a small set of equations that characterize the role of dopamine in modulating learning and excitability in the direct and indirect pathways explains, in an integrated way: (1) the role of dopamine in the development of tics; (2) the relation between dopaminergic disturbances, involvement of the motor CBGTC loop, and excessive habit learning in TS; (3) the mechanism of action of antipsychotics in TS; and (4) the psychological and neural mechanisms of action of habit-reversal training, the main behavioral therapy for TS.
A simple computational model, thoroughly grounded on computational theory and basic-science findings concerning dopamine and the basal ganglia, provides an integrated, rigorous mathematical explanation for a broad range of empirical findings in TS.
The author has not supplied his declaration of competing interest.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.
Comments
No Comments have been published for this article.