Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T17:13:06.381Z Has data issue: false hasContentIssue false

A possible association between the CCK-AR gene and persistent auditory hallucinations in schizophrenia

Published online by Cambridge University Press:  16 April 2020

J. Sanjuan*
Affiliation:
Unidad de Psiquiatría, Facultad de Medicina, Hospital Clínico, Blasco Ibañez 15, Universitat de València, 46010Valencia, Spain
I. Toirac
Affiliation:
Departamento de Genética, Facultad de Biología, Universitat de València, 46100Burjasot, Valencia, Spain
J.C. González
Affiliation:
Unidad de Psiquiatría, Facultad de Medicina, Hospital Clínico, Blasco Ibañez 15, Universitat de València, 46010Valencia, Spain
C. Leal
Affiliation:
Unidad de Psiquiatría, Facultad de Medicina, Hospital Clínico, Blasco Ibañez 15, Universitat de València, 46010Valencia, Spain
M.D. Moltó
Affiliation:
Departamento de Genética, Facultad de Biología, Universitat de València, 46100Burjasot, Valencia, Spain
C. Nájera
Affiliation:
Departamento de Genética, Facultad de Biología, Universitat de València, 46100Burjasot, Valencia, Spain
R. de Frutos
Affiliation:
Departamento de Genética, Facultad de Biología, Universitat de València, 46100Burjasot, Valencia, Spain
*
*Corresponding author. Email address: [email protected] (J. Sanjuan).
Get access

Abstract

Recent studies have suggested that DNA variations in the CCK-AR gene might predispose individuals to schizophrenia and particularly to auditory hallucinations (AH). The aim of this study is to assess the association between AH, using a specific scale for AH in schizophrenia (PSYRATS), and the CCK-AR polymorphism at 779 in a Spanish sample. A total of 105 DSM-IV schizophrenic patients with AH and 93 unrelated controls were studied. Twenty-two patients were considered as persistent auditory hallucinators, which showed similar clinical and demographic characteristic than patients with episodic AH, but with the exception of the PSYRATS values. The persistent AH group showed an excess of the A1 allele when was compared with episodic or control groups. Our data support the possible role of the CCK-AR gene in the development of persistent AH in schizophrenic patients.

Type
Original article
Copyright
Copyright © 2004 European Psychiatric Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreasen, NCFlaum, M. Schizophrenia: the characteristic symptoms. Schizophr Bull 1991;17:27–49.CrossRefGoogle ScholarPubMed
Bachus, SEHyde, TMHerman, MMEgan, MFKleinman, JE. Abnormal cholecystokinin mRNA levels in entorhinal cortex of schizophrenics. J Psychiatr Res 1997;31:233–56.CrossRefGoogle ScholarPubMed
Beinfeld, MC. An introduction to neuronal cholecystokinin. Peptides 2001;8:1197–2000.CrossRefGoogle Scholar
Cheung, PSchweitzer, ICrowley, KTuckwell, V. Violence in schizophrenia: role of hallucinations and delusions. Schizophr Res 1997;26:81–90.CrossRefGoogle ScholarPubMed
Conley, RRBuchanan, RW. Evaluation of treatment-resistant schizophrenia. Schizophr Bull 1997;23:663–74.CrossRefGoogle ScholarPubMed
David, AS. Auditory hallucinations: phenomenology, neuropsychology and neuroimaging update. Acta Psychiatr Scand 1999;395:95–104.CrossRefGoogle ScholarPubMed
Falloon, IRTalbot, RE. Persistent auditory hallucinations: coping mechanisms and implications for management. Psychol Med 1981;11:329–39.CrossRefGoogle ScholarPubMed
Farmery, SMOwen, FPoulter, MCrow, TJ. Reduced high affinity cholecystokinin binding in hippocampus and frontal cortex of schizophrenic patients. Life Sci 1985;36:473–7.CrossRefGoogle ScholarPubMed
Feifel, DReza, TRobeck, S. Antipsychotic potential of CCK-based treatments: an assessment using the prepulse inhibition model of psychosis. Neuropsychopharmacology 1999;20:141–9.CrossRefGoogle Scholar
Ferrier, INCrow, TJFarmery, SMRoberts, GWOwen, FAdrian, TEBloom, SR. Reduced cholecystokinin levels in the limbic lobe in schizophrenia. A marker for pathology underlying the defect state? Ann NY Acad Sci 1985;448:4995–5011.CrossRefGoogle ScholarPubMed
Funakoshi, AMiyasaka, KMatsumoto, HYamamori, STakigucji, SKataoka, YMatsusue, KKono, AShimokata, H. Gene structure of human cholecystokinin (CCK) type A receptor: body fat content is related to CCK type-A receptor gene promoter polymorphism. FEBS Lett 2000;466:264–6.CrossRefGoogle ScholarPubMed
Garver, DLHolcomb, JAChristensen, JD. Heterogeneity of response to antipsychotics from multiple disorders in the schizophrenia spectrum. J Clin Psychiatry 2000;61:964–72.CrossRefGoogle ScholarPubMed
Haddock, GMcCarron, JTarrier, NFaragher, EB. Scales to measure dimensions of hallucinations and delusions: the psychotic symptom rating scales (PSYRATS). Psychol Med 1999;29:879–88.CrossRefGoogle Scholar
Inoue, HIannoti, CAWelling, CMVeile, RDonis-Keller, HPermutt, MA. Human cholecystokinin type A receptor gene: cytogenetic localization, physical mapping, and identification of two missense variants in patients with obesity and non-insulin-dependent diabetes mellitus (NIDDM). Genomics 1997;42:331–5.CrossRefGoogle Scholar
Ise, KAkiyoshi, J, HorinuchiY, Tsutsumi, TIsogawa, KNagayama, H. Association between the CCK-A receptor gene and panic disorder. Am J Med Genet 2003;118:29–31.CrossRefGoogle Scholar
Jenner, JAVan de Willige, GWiersma, D. Effectiveness of cognitive therapy with coping training for persistent auditory hallucinations: a retrospective study of attenders of a psychiatric out-patient department. Acta Psychiatr Scand 1998;98:384–9.CrossRefGoogle ScholarPubMed
Kane, JMHonigfeld, GSinger, JMeltzer, H. Clozapine in treatment-resistant schizophrenics. Psychopharmacol Bull 1988;24:62–7.Google ScholarPubMed
Kennedy, JLBradwejn, JKoszycki, DKing, NCrowe, RVincent, J, et al. Investigation of cholecystokinin system genes in panic disorder. Mol Psychiatry 1999;4:284–5.CrossRefGoogle ScholarPubMed
Kerwin, RRobinson, PStephenson, J. Distribution of CCK binding sites in the human hippocampal formation and their alteration in schizophrenia: a post-mortem autoradiographic study. Psychol Med 1992;22:37–43.CrossRefGoogle ScholarPubMed
Lawrie, SMBuechel, CWhalley, HCFrith, CDFriston, KJJohnstone, EC. Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biol Psychiatry 2002;51:1008–111.CrossRefGoogle ScholarPubMed
Lesch, KP. Hallucinations: psychopathology meets functional genomics. Mol Psychiatry 1998;3:278–81.CrossRefGoogle ScholarPubMed
Morrison, APWells, ANothard, S. Cognitive factors in predisposition to auditory and visual hallucinations. Br J Clin Psychol 2000;39:67–78.CrossRefGoogle ScholarPubMed
Nair, NPLal, SThavundayil, JXWood, PLEtienne, PGuyda, H. CCK-33 antagonizes apomorphine-induced growth hormone secretion and increases basal prolactin levels in man. Neuropeptides 1984;4:281–91.CrossRefGoogle ScholarPubMed
Okubo, THarada, S. Polymorphisms of the CCK, CCKAR and CCKBR genes: an association with alcoholism study. J Stud Alcohol 2001;62:413–21.CrossRefGoogle ScholarPubMed
Okubo, THarada, SHiguchi, SMatsushita, S. Investigation of quantitative trait loci in the CCKAR gene with susceptibility to alcoholism. Alcohol Clin Exp Res 2002;26(Suppl):2S–5S.CrossRefGoogle ScholarPubMed
Peselow, EAngrist, BSudilovsky, ACorwin, JSiekierski, JTrent, F, et al. Double blind controlled trials of cholecystokinin octapeptide in neuroleptic-refractory schizophrenia. Psychopharmacology 1987;91:80–4.CrossRefGoogle ScholarPubMed
Shergill, SSMurray, RMMcGuire, PK. Auditory hallucinations: a review of psychological treatments. Schizophr Res 1998;32:137–50.CrossRefGoogle ScholarPubMed
Slade, PBentall, R. Sensory Deception: A Scientific Analysis of Hallucinations. London: Croom Helm; 1988.Google Scholar
Stephane, MBarton, SBoutros, NN. Auditory verbal hallucinations and dysfunction of the neural substrates of speech. Schizophr Res 2001;50:61–78.CrossRefGoogle Scholar
Tachikawa, HHarada, SKawanishi, YOkubo, TShiraishi, H. Novel polymorphisms of the human cholecystokinin A receptor gene: An association analysis with schizophrenia. Am J Med Genet 2000;96:141–5.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Tachikawa, HHarada, SKawanishi, YOkubo, TSuzuki, T. Linked polymorphisms (-333G>Tand-286A>G)in the promoter region of the CCK-receptor gene may be associated with schizophrenia. Psychiatry Res 2001;103:147–55.CrossRefGoogle Scholar
Vaccarino, FJ. Nucleus accumbens dopamine-CCK interactions in psychostimulant reward and related behaviours. Neurosci Biobehav Rev 1994;18:207–14.CrossRefGoogle Scholar
Vanakoski, JVirkkunen, MNaukkarinen, HGoldman, D. No association of CCK and CCK (B) receptor polymorphisms with alcohol dependence. Psychiatry Res 2001;102:1–7.CrossRefGoogle ScholarPubMed
Wei, JHemmings, GP. The CCK-A receptor gene possibly associated with auditory hallucinations in schizophrenia. Eur Psychiatry 1999;14:67–70.CrossRefGoogle Scholar
Weiss, APHeckers, S. Neuroimaging of hallucinations: a review of the literature. Psychiatry Res 1999;92:61–74.CrossRefGoogle ScholarPubMed
Zachrisson, Ode Belleroche, JWendt, KRHirsch, SLindefors, N. Cholecystokinin CCK(B) receptor mRNA isoforms: expression in schizophrenic brains. Neuroreport 1999;10:3265–8.CrossRefGoogle ScholarPubMed
Zhang, XYZhou, DFZhang, PYWei, J. The CCK-A receptor gene possibly associated with positive symptoms of schizophrenia. Mol Psychiatry 2000;5:239–40.CrossRefGoogle ScholarPubMed
Submit a response

Comments

No Comments have been published for this article.