Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T13:26:51.300Z Has data issue: false hasContentIssue false

In vivo hippocampal 31P NMR metabolites in Alzheimer's disease and ageing

Published online by Cambridge University Press:  16 April 2020

G Mecheri
Affiliation:
Lyon RTH Laënnec Medical School, Claude Bernard University and CHS, Le Vinatier, 95 bd Pinel (jeune equipe 1882 - J Dalery), 69677Bron cedex, France
M Marie-Cardine
Affiliation:
Lyon RTH Laënnec Medical School, Claude Bernard University and CHS, Le Vinatier, 95 bd Pinel (jeune equipe 1882 - J Dalery), 69677Bron cedex, France
D Sappey-Marinier
Affiliation:
Lyon-Sud Medical School, Claude-Bernard University and CHLS Jules-Courmont, Pierre-Bénite, France
H Bonmartin
Affiliation:
Lyon-Sud Medical School, Claude-Bernard University and CHLS Jules-Courmont, Pierre-Bénite, France
G Albrand
Affiliation:
Antoine-Charrial Hospital, Francheville, France
G Ferry
Affiliation:
Geriatric Medicine Unit, Les Aurélias, Craponne, France
N Coppard-Meyer
Affiliation:
Geriatric Medicine Unit, Les Aurélias, Craponne, France
P Courpron
Affiliation:
Antoine-Charrial Hospital, Francheville, France
Get access

Summary

Memory loss is the most common early symptom of Alzheimer's disease (AD). For this study, we chose the hippocampi as regions of interest. The hippocampus, which is closely associated with memory processing, is known to be vulnerable to damage in the early stage of AD. We considered both inter-group (patients vs controls) and intra-group (right vs left hippocampus) comparisons. We examined seven patients meeting the DSM-III-R criteria of senile dementia and the National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disorders Association (NINCDS — ADRDA) criteria of probable AD, and II aged controls. This study focused on the measurement of phosphorus 31 (31P) Nuclear Magnetic Resonance (NMR) spectroscopy metabolites in each hippocampus. We found significant differences in phosphorus metabolites for both intra-group comparison (pH shifted towards relative alkalosis in the left hippocampus of patients) and inter-group consideration (reduced phosphodiesters [Pde]and elevated gamma adenosine triphosphate (ATP) in the right hippocampus, higher inorganic phosphate (pHi) in the left hippocampus for patients as compared to controls). We suggest energy failure and membrane functional breakdown in patients compared to aged controls.

Type
Original article
Copyright
Copyright © Elsevier, Paris 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alavi, ADann, RChawluk, J, et al.Positron emission tomography imaging of regional cerebral glucose metabolism Semin Nucl Med 1986 16 23410.1016/S0001-2998(86)80002-2CrossRefGoogle ScholarPubMed
Arispe, NPollard, HBRojas, EGiant multilevel cation channels formed by Alzheimer's disease amyloid beta-protein (a beta P-1-40) in bilayer membranes Proc Natl Acad Sci USA 1993; 90 105731057710.1073/pnas.90.22.10573CrossRefGoogle Scholar
Bartus, RTDean, RL IIIBeer, B, et al.The cholinergic hypothesis of geriatric memory dysfunction Science 1982 217 40841710.1126/science.7046051CrossRefGoogle ScholarPubMed
Baumann, KMandelkow, EMBiemat, J, et al.Abnormal Alzheimer-like phosphorylation of Tau protein by cyclindependent Kinases Cdk2 and Cdk5 FEBS Lett 1993 336 41742410.1016/0014-5793(93)80849-PCrossRefGoogle Scholar
Beal, MFAging, energy and oxidative stress in neurodegenetative diseases. Ann Neurol 1995; 38: 35736610.1002/ana.410380304CrossRefGoogle Scholar
Boller, FBecker, JTHolland, AL, et al.Predictors of decline in Alzheimer's disease Cortex 1991 27 91710.1016/S0010-9452(13)80264-XCrossRefGoogle ScholarPubMed
Bothmer, JJolles, JPhosphoinositide metabolism, aging and Alzheimer's disease. Biochemica et Biophysica Acta 1994; 1225: 11112410.1016/0925-4439(94)90068-XCrossRefGoogle ScholarPubMed
Bothmer, JMarkerink, MJolles, JEvidence for a selective decrease in type 1 Phosphatidylinositol Kinase activity in brains of patients with Alzheimer's disease. Dementia 1994; 5: 611Google ScholarPubMed
Bottomley, PACousins, JPPendrey, DL, et al.Alzheimer dementia: quantification of energy metabolism and mobile phosphoesters with P-31 NMR spectroscopy Radiology 1992 183 695699CrossRefGoogle ScholarPubMed
Brown, CGLevine, SRGorell, JM, et al.In vivo P31 NMR profiles of Alzheimer's disease and multiple subcortical infarct dementia Neurology 1989 39 14231427CrossRefGoogle Scholar
Chandrasekaran, KHatanpaa, KBrady, DR, et al.Evidence for physiological down-regulation of brain oxidative phosphorylation in Alzheimer's Disease Exp Neurol 1996 142 808810.1006/exnr.1996.0180CrossRefGoogle ScholarPubMed
Cuenod, CAKaplan, DBMichot, JL, et al.Phospholipid abnormalities in early Alzheimer's disease Arch Neurol 1995 52 899410.1001/archneur.1995.00540250097018CrossRefGoogle ScholarPubMed
Deiken, RFCalabrese, GRaz, J, et al.A 31 phosphorus magnetic resonance spectroscopy study of diazepam does not affect brain phosphorus metabolism Biol Psychiatry 1992 32 62863110.1016/0006-3223(92)90077-DCrossRefGoogle Scholar
Deleon, MJGolomb, JConvit, A, et al.Measurement of medial temporal lobe atrophy in diagnosis of Alzheimer's disease The Lancet 1993 341 12510.1016/0140-6736(93)92610-6CrossRefGoogle Scholar
Eimerl, SSchramm, MThe quantity of Calcium that appears to induce neuronal death. J Neurochem 1994; 62: 1223122610.1046/j.1471-4159.1994.62031223.xCrossRefGoogle ScholarPubMed
Farooqui, AAHorrocks, LAMetabolic and functional aspects of neural membrane phospholipids. In: Horrocks, LA, et al.Phospholipids in the nervous system 2 Berlin: Raven Press, 1985; 341348Google Scholar
Farooqui, AALiss, LHorrocks, LANeurochemical aspects of Alzheimer's disease: involvement of membrane phospholipids. Met Brain Dis 1988; 3: 1935CrossRefGoogle ScholarPubMed
Folstein, MFFolstein, SEMcHugh, PRMini-Mental State: A practical method for grading the cognitive state of patients for the clinician. J Psychiat Res 1975; 12: 18919810.1016/0022-3956(75)90026-6CrossRefGoogle ScholarPubMed
Fukuyama, HKameyama, MHarada, K, et al.Glucose metabolism and rate constants in Alzheimer's disease examined with dynamic positron emission tomography scan Acta Neurol Scand 1989 80 30731310.1111/j.1600-0404.1989.tb03884.xCrossRefGoogle ScholarPubMed
Golomb, JKluger, ADeleon, MI, et al.Hippocampal formation size predicts declining memory performance in normal aging Neurology 1996 47 81081310.1212/WNL.47.3.810CrossRefGoogle ScholarPubMed
Gonzalez, RGGuimaraes, ARMoore, GJ, et al.Quantitative In Vivo 31P Magnetic Resonance Spectroscopy of Alzheimer's Disease Alzheimer Disease and Associated Disorders 1996 10 4657Google Scholar
Hachinski, VCIllif, LDPhill, M, et al.Cerebral blood flow in dementia Arch Neurol 1975 32 632637CrossRefGoogle ScholarPubMed
Hamilton, MA rating scale for depression. J Neurol Neurosurg Psychiatr 1960; 23: 5662CrossRefGoogle ScholarPubMed
Haxby, JVGrady, CLKoss, E, et al.Heterogeneous anterior-posterior metabolic patterns in Dementia of The Alzheimer Type Neurology 1988 38 18531863CrossRefGoogle ScholarPubMed
Hubesch, BSappey-Marinier, DDeiken, R, et al.Regional differences of phosphorus metabolites in the human brain. In: Society of Magnetic Resonance in Medecine eds. Book of Abstracts Berkeley 1989; 1 447Google Scholar
Hyman, BTPenney, JBBlackstone, CD, et al.Localization of non-N-Methyl-D-Aspartate glutamate receptors in normal and Alzheimer hippocampal formation Ann Neurol 1993 35 313710.1002/ana.410350106CrossRefGoogle Scholar
Hyman, BTVan Hoesen, GWDamasio, ARAlzheimer's disease: glutamate depletion in the hippocampal perforant pathway zone. Ann Neurol 1987; 22: 3740CrossRefGoogle ScholarPubMed
Hyman, BTVan Hoesen, GWDamasio, A, et al.Alzheimer's disease: cell-specific pathology isolates the hippocampal formation Science 1984 255 1168117010.1126/science.6474172CrossRefGoogle Scholar
Jobst, KASmith, ADSzatmari, M, et al.Detection in life of confirmed Alzheimer's disease using a simple measurement of medial temporal lobe atrophy The Lancet 1992 340 11791183Google ScholarPubMed
Kanfer, JNHattori, HOrihel, DReduced phospholipase D activity in brain tissue samples from Alzheimer's disease patients. Ann Neurol 1986; 20: 26526710.1002/ana.410200214CrossRefGoogle ScholarPubMed
Kanfer, JNPettegrew, JWMoossy, J, et al.Alterations of selected enzymes of phospholipid metabolism in Alzheimer's disease brain tissue as compared to nonAlzheimer's disease controls Neurochem Res 1993 18 33133410.1007/BF00969091CrossRefGoogle Scholar
Kuhl, DEMinoshima, SFessler, JA, et al.In vivo mapping of cholinergic terminals in normal aging, Alzheimer's Disease and Parkinson's Disease Ann Neurol 1996 40 399410CrossRefGoogle ScholarPubMed
Lehninger, ALBiochemistry 2nd ed New York: Worth, 1975Google Scholar
McKhann, GDrachman, DFolstein, M, et al.Clinical diagnosis of Alzheimer's disease: report on the NINCDS-ADRDA workgroup under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology 1984; 34: 939944CrossRefGoogle Scholar
Mecheri, GMarie-Cardine, MIn Vivo metabolic study with NMR spectroscopy in Alzheimer's Disease In: Macher, JPCrocq, MANedelec, FNew Prospects in Psychiatry: The Bioclinical Interface & The Mapping Brain Function New York: John Libbey Evrotext, John Libbey Eurotext, 1994; 357362Google Scholar
Miller, BLRead, STang, C, et al.Differences in red blood cell choline and lipid-bound choline between patients with Alzheimer's disease and control subjects. Neurobiol Aging 1991; 12: 6164CrossRefGoogle ScholarPubMed
Murphy, DGMBottomley, PASalerno, JA, et al.An in vivo study of phosphorus and glucose metabolism in Alzheimer's disease using magnetic resonance spectroscopy and PET. Arch Gen Psychiatry 1993; 50: 341349CrossRefGoogle Scholar
Nitsch, RMBlusztajn, JKPittas, AG, et al.Evidence for a membrane defect in Alzheimer disease brain Proc Natl Acad Sci USA 1992 89; 16711675CrossRefGoogle ScholarPubMed
Ordidge, RJConnely, ALohman, JABImage-selected in vivo spectroscopy (ISIS): a new technique for spatially selective NMR spectroscopy. J Magn Reson 1986; 66: 283294Google Scholar
Petroff, OAPrichard, JWBehar, KL, et al.Cerebral intracellular pH by 31P magnetic resonance spectroscopy. Neurology 1985; 35: 781788CrossRefGoogle Scholar
Pettegrew, JWMolecular insights into Alzheimer's disease Proc NY Acad Sci 1989 568; 528CrossRefGoogle ScholarPubMed
Pettegrew, JWMinshew, NJCohen, MM, et al.P-31 NMR changes in Alzheimer's and Huntington's disease brain Neurology 1984 34 Suppl 1 281Google Scholar
Pettegrew, JWPanchalingam, KKlunk, WE, et al.Alterations of cerebral metabolism in probable Alzheimer's disease: a preliminary study. Neurobiol Aging 1994; 15: 117132CrossRefGoogle ScholarPubMed
Rapoport, SIAnatomic and functional brain imaging in Alzheimer's disease In: Bloom, FEKupfer, DJPsychopharmacology: The Fourth Generation of Progress Roussach: Raven Press Ltd, 1995; 14011415Google Scholar
Roses, ADApolipoprotein E genotyping in the differential diagnosis, not prediction, of Alzheimer's disease. Ann Neurol 1995; 38: 614CrossRefGoogle Scholar
Roth, GSJoseph, JAMason, RPMembranes alterations as causes of impaired signal transduction in Alzheimer's disease and aging. Trends Neurosci 1995; 18: 20320610.1016/0166-2236(95)93902-ACrossRefGoogle ScholarPubMed
Samuel, DHeron, DSHerschkowitz, M, et al.Aging, receptor binding and membrane viscosity In: Giacobini, EVernadakis, AThe aging brain: cellular and molecular mechanisms of aging in the nervous system New York: Raven Press, 1982; 9397Google Scholar
Smith, CDPettegrew, LCAvison, MJ, et al.Frontal lobe phosphorus metabolism and neuropsychological function in Aging and in Alzheimer's disease. Ann Neurol 1995; 38: 194201CrossRefGoogle ScholarPubMed
Traill, KNWick, GLipids and lymphocyte function. Immunol Today 1984; 5: 707610.1016/0167-5699(84)90169-5CrossRefGoogle ScholarPubMed
Tucek, SRegulation of acetylcholine synthesis in the brain. J Neurochem 1985; 44: 1124CrossRefGoogle Scholar
Welch, KMA31P in vivo spectroscopy of adult human brain In: Pettegrew, JWNMR: principles and applications to biomedical research New York: Springer-Verlag, 1990; 42946710.1007/978-1-4612-3300-8_13CrossRefGoogle Scholar
Wells, KFarooqui, AALiss, L, et al.Neural membrane phospholipids in Alzheimer's Disease. Neurochem. Res 1995; 20: 13291333CrossRefGoogle Scholar
West, MJColeman, PDFlood, DG, et al.Differences in the pattern of hippocampal neuronal loss in normal aging and Alzheimer's disease. The Lancet 1994; 344: 769772CrossRefGoogle ScholarPubMed
Submit a response

Comments

No Comments have been published for this article.