No CrossRef data available.
Article contents
Computer-based detection of depression and dementia in spontaneous speech
Published online by Cambridge University Press: 13 August 2021
Abstract
There is a significant relation between old-age depression and subsequent dementia in patients aged 50. This supports the hypothesis of old-age depression being a predictor, and possibly a causal factor, of subsequent dementia. The number of people aged 60 years and over has tripled since 1950, reaching 16% in 2050, leading to new medical challenges. Depression is the most common mental disorder in older adults, affecting 7% of the older population. Dementia is the second most common with about 5% prevalence worldwide, but it is the first leading cause of disease burden.
Early detection and treatment is essential in promoting remission, preventing relapse, and reducing emotional burden. Speech is a well established early indicator of cognitive deficits. Speech processing methods offer great potential to fully automatically screen for prototypic indicators of both dementia and depressive disorders.
We present two different methods to detect pathological speech with artificial neural networks. We use both deep architectures, as well as more traditional machine learning approaches.
The models developed using a two-stage deep architecture achieved 59% classification accuracy on the test set from DementiaBank. Our CNN system achieved the best classification accuracy of 63.6% for dementia, but reaching 70% for depressive disorders on the test set from Distress Analysis Interview Corpus.
These methods offer a promising classification accuracy ranging from 63% to 70%, applicable in an innovative speech-based screening system.
- Type
- Abstract
- Information
- European Psychiatry , Volume 64 , Special Issue S1: Abstracts of the 29th European Congress of Psychiatry , April 2021 , pp. S349
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press on behalf of the European Psychiatric Association
Comments
No Comments have been published for this article.