Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T03:32:07.631Z Has data issue: false hasContentIssue false

Computational models of Bitemporal, Bifrontal and Right Unilateral ECT predict differential stimulation of brain regions associated with efficacy and cognitive side effects

Published online by Cambridge University Press:  03 February 2017

S. Bai
Affiliation:
Department of Electrical and Computer Engineering, Technische Universität München, 80333München, Germany Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales (UNSW), NSW2052, Australia
V. Gálvez
Affiliation:
School of Psychiatry, UNSW, NSW2052, Australia Black Dog Institute, NSW, 2031, Australia
S. Dokos
Affiliation:
Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales (UNSW), NSW2052, Australia
D. Martin
Affiliation:
School of Psychiatry, UNSW, NSW2052, Australia Black Dog Institute, NSW, 2031, Australia
M. Bikson
Affiliation:
Department of Biomedical Engineering, The City College of The City University of New York, New York, USA
C. Loo*
Affiliation:
School of Psychiatry, UNSW, NSW2052, Australia Black Dog Institute, NSW, 2031, Australia Department of Psychiatry, St George Hospital, NSW2217, Australia
*
Corresponding author at: Black Dog Institute, Hospital Road, Prince of Wales Hospital, Randwick, NSW 2031, Australia. Tel.: +61 2 9113 2039; fax: +61 2 9113 3734. E-mail address: [email protected] (C. Loo).
Get access

Abstract

Background

Extensive clinical research has shown that the efficacy and cognitive outcomes of electroconvulsive therapy (ECT) are determined, in part, by the type of electrode placement used. Bitemporal ECT (BT, stimulating electrodes placed bilaterally in the frontotemporal region) is the form of ECT with relatively potent clinical and cognitive side effects. However, the reasons for this are poorly understood.

Objective

This study used computational modelling to examine regional differences in brain excitation between BT, Bifrontal (BF) and Right Unilateral (RUL) ECT, currently the most clinically-used ECT placements. Specifically, by comparing similarities and differences in current distribution patterns between BT ECT and the other two placements, the study aimed to create an explanatory model of critical brain sites that mediate antidepressant efficacy and sites associated with cognitive, particularly memory, adverse effects.

Methods

High resolution finite element human head models were generated from MRI scans of three subjects. The models were used to compare differences in activation between the three ECT placements, using subtraction maps.

Results and conclusion

In this exploratory study on three realistic head models, Bitemporal ECT resulted in greater direct stimulation of deep midline structures and also left temporal and inferior frontal regions. Interpreted in light of existing knowledge on depressive pathophysiology and cognitive neuroanatomy, it is suggested that the former sites are related to efficacy and the latter to cognitive deficits. We hereby propose an approach using binarised subtraction models that can be used to optimise, and even individualise, ECT therapies.

Type
Original article
Copyright
Copyright © European Psychiatric Association 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coffey, C.E.Fochtmann, L.J.Greenberg, R.M.Isenberg, K.E.Kellner, C.H.Moench, L.A.et al.The practice of electroconvulsive therapy: recommendations for treatment, training, and privileging – a task force report of the American Psychiatric Association. 2nd ed.Washington, DC: American Psychiatric Association; 2001.Google Scholar
Kellner, C.H.Knapp, R.Husain, M.M.Rasmussen, K.Sampson, S.Cullum, M.et al.Bifrontal, bitemporal and right unilateral electrode placement in ECT: randomised trial. Br J Psychiatry 2010;196(3):226234.CrossRefGoogle ScholarPubMed
Prudic, J.Olfson, M.Marcus, S.C.Fuller, R.B.Sackeim, H.A.Effectiveness of electroconvulsive therapy in community settings. Biol Psychiatry 2004;55(3):301312.CrossRefGoogle ScholarPubMed
Sackeim, H.A.Prudic, J.Devanand, D.P.Kiersky, J.E.Fitzsimons, L.Moody, B.J.et al.Effects of stimulus intensity and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy. N Engl J Med 1993;328(12):839846.CrossRefGoogle ScholarPubMed
Sackeim, H.A.Luber, B.Moeller, J.R.Prudic, J.Devanand, D.P.Nobler, M.S.Electrophysiological correlates of the adverse cognitive effects of electroconvulsive therapy. J ECT 2000;16(2):110120.CrossRefGoogle ScholarPubMed
Sackeim, H.A.Prudic, J.Fuller, R.Keilp, J.Lavori, P.W.Olfson, M.The cognitive effects of electroconvulsive therapy in community settings. Neuropsychopharmacology 2007;32(1):244254.CrossRefGoogle ScholarPubMed
Sackeim, H.A.Prudic, J.Nobler, M.S.Fitzsimons, L.Lisanby, S.H.Payne, N.et al.Effects of pulse width and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy. Brain Stimul 2008;1(2):7183.CrossRefGoogle ScholarPubMed
UK ECT Review, Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. Lancet 2003;361(9360):799808.Google Scholar
Kellner, C.H.Tobias, K.G.Wiegand, J.Electrode placement in electroconvulsive therapy (ECT): a review of the literature. J ECT 2010;26(3):175180.CrossRefGoogle ScholarPubMed
Galvez, V.Loo, C.K.Alonzo, A.Cerrillo, E.Menchon, J.M.Crespo, J.M.et al.Do benzodiazepines moderate the effectiveness of bitemporal electroconvulsive therapy in major depression?. J Affect Disord 2013;150(2):686690.CrossRefGoogle ScholarPubMed
Bailine, S.H.Rifkin, A.Kayne, E.Selzer, J.A.Vital-Herne, J.Blieka, M.et al.Comparison of bifrontal and bitemporal ECT for major depression. Am J Psychiatry 2000;157(1):121123.CrossRefGoogle ScholarPubMed
Dunne, R.A.McLoughlin, D.M.Systematic review and meta-analysis of bifrontal electroconvulsive therapy versus bilateral and unilateral electroconvulsive therapy in depression. World J Biol Psychiatry 2012;13(4):248258.CrossRefGoogle ScholarPubMed
Letemendia, F.J.J.Delva, N.J.Rodenburg, M.Lawson, J.S.Inglis, J.Waldron, J.J.et al.Therapeutic advantage of bifrontal electrode placement in ECT. Psychol Med 1993;23(02):349360.CrossRefGoogle ScholarPubMed
Ranjkesh, F.Barekatain, M.Akuchakian, S.Bifrontal versus right unilateral and bitemporal electroconvulsive therapy in major depressive disorder. J ECT 2005;21(4):207210.CrossRefGoogle ScholarPubMed
Sobin, C.Sackeim, H.A.Prudic, J.Devanand, D.Moody, B.J.McElhiney, M.C.Predictors of retrograde amnesia following ECT. Am J Psychiatry 1995;152(7):9951001.Google ScholarPubMed
Lawson, J.S.Inglis, J.Delva, N.J.Rodenburg, M.Waldron, J.J.Letemendia, F.J.J.Electrode placement in ECT: cognitive effects. Psychol Med 1990;20(02):335344.CrossRefGoogle ScholarPubMed
O’Connor, D.W.Gardner, B.Eppingstall, B.Tofler, D.Cognition in elderly patients receiving unilateral and bilateral electroconvulsive therapy: a prospective, naturalistic comparison. J Affect Disord 2010;124(3):235240.CrossRefGoogle ScholarPubMed
Weiner, R.D.Rogers, H.J.Davidson, J.R.T.Squire, L.R.Effects of stimulus parameters on cognitive side effects. Ann N Y Acad Sci 1986;462(1 Electroconvul):315325.CrossRefGoogle ScholarPubMed
Bai, S.Loo, C.Dokos, S.Electroconvulsive therapy simulations using an anatomically-realistic head model. Conf proc IEEE Eng Med Biol Soc, 2011. IEEE 2011;54845487 ISBN 978-1-4577-1589-1.Google ScholarPubMed
Bai, S.Loo, C.Lovell, N.H.Dokos, S.Comparison of three right-unilateral electroconvulsive therapy montages. Conf proc IEEE Eng Med Biol Soc, 2013. IEEE 2013;819822 ISBN 978-1-4577-0216-7.Google ScholarPubMed
Lee, W.H.Deng, Z.D.Kim, T.S.Laine, A.F.Lisanby, S.H.Peterchev, A.V.Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: influence of white matter anisotropic conductivity. Neuroimage 2012;59(3):21102123.CrossRefGoogle Scholar
McNally, K.A.Blumenfeld, H.Focal network involvement in generalized seizures: new insights from electroconvulsive therapy. Epilepsy Behav 2004;5(1):312.CrossRefGoogle ScholarPubMed
Regenold, W.T.Noorani, R.J.Piez, D.Patel, P.Nonconvulsive electrotherapy for treatment resistant unipolar and bipolar major depressive disorder: a proof-of-concept trial. Brain Stimul 2015;8(5):855861.CrossRefGoogle ScholarPubMed
Bai, S.Dokos, S.Ho, K.A.Loo, C.A computational modelling study of transcranial direct current stimulation montages used in depression. Neuroimage 2014;87:332344.CrossRefGoogle ScholarPubMed
Datta, A.Truong, D.Minhas, P.Parra, L.C.Bikson, M.Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Front Psychiatry 2012;3:91.CrossRefGoogle ScholarPubMed
Bikson, M.Dmochowski, J.Rahman, A.The quasi-uniform assumption in animal and computational models of non-invasive electrical stimulation. Brain Stimul 2013;6(4):704705.CrossRefGoogle ScholarPubMed
Kempton, M.J.Structural neuroimaging studies in major depressive disorder. Arch Gen Psychiatry 2011;68(7):675.CrossRefGoogle ScholarPubMed
Koolschijn, P.C.M.van Haren, N.E.Lensvelt-Mulders, G.J.Hulshoff Pol, H.E.Kahn, R.S.Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp 2009;30(11):37193735.CrossRefGoogle ScholarPubMed
Drevets, W.C.Price, J.L.Furey, M.L.Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 2008;213(1–2):93118.CrossRefGoogle ScholarPubMed
Rigucci, S.Serafini, G.Pompili, M.Kotzalidis, G.Tatarelli, R.Anatomical and functional correlates in major depressive disorder: the contribution of neuroimaging studies. World J Biol Psychiatry 2009;116.CrossRefGoogle Scholar
Peng, J.Liu, J.Nie, B.Li, Y.Shan, B.Wang, G.et al.Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: a voxel-based morphometry study. Eur J Radiol 2011;80(2):395399.CrossRefGoogle ScholarPubMed
Pillay, S.S.Yurgelun-Todd, D.A.Bonello, C.M.Lafer, B.Fava, M.Renshaw, P.F.A quantitative magnetic resonance imaging study of cerebral and cerebellar gray matter volume in primary unipolar major depression: relationship to treatment response and clinical severity. Biol Psychiatry 1997;42(2):7984.CrossRefGoogle ScholarPubMed
Lee, H.Y.Tae, W.S.Yoon, H.K.Lee, B.T.Paik, J.W.Son, K.R.et al.Demonstration of decreased gray matter concentration in the midbrain encompassing the dorsal raphe nucleus and the limbic subcortical regions in major depressive disorder: an optimized voxel-based morphometry study. J Affect Disord 2011;133(1–2):128136.CrossRefGoogle ScholarPubMed
Supprian, T.Reiche, W.Schmitz, B.Grunwald, I.Backens, M.Hofmann, E.et al.MRI of the brainstem in patients with major depression, bipolar affective disorder and normal controls. Psychiatry Res 2004;131(3):269276.CrossRefGoogle ScholarPubMed
Drevets, W.C.Savitz, J.Trimble, M.The subgenual anterior cingulate cortex in mood disorders. CNS Spectr 2008;13(8):663681.CrossRefGoogle ScholarPubMed
Anderson, R.J.Frye, M.A.Abulseoud, O.A.Lee, K.H.McGillivray, J.A.Berk, M.et al.Deep brain stimulation for treatment-resistant depression: efficacy, safety and mechanisms of action. Neurosci Biobehav Rev 2012;36(8):19201933.CrossRefGoogle ScholarPubMed
Drevets, W.C.Price, J.L.Simpson, J.R.Todd, R.D.Reich, T.Vannier, M.et al.Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997;386(6627):824827.CrossRefGoogle ScholarPubMed
Drevets, W.Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol 2002;12(6):527544.CrossRefGoogle ScholarPubMed
Mayberg, H.S.Brannan, S.K.Tekell, J.L.Silva, J.Mahurin, R.K.McGinnis, S.et al.Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 2000;48(8):830843.CrossRefGoogle ScholarPubMed
Holtho, V.A.Beuthien-Baumann, B.Zundorf, G.Triemer, A.Ludecke, S.Winiecki, P.et al.Changes in brain metabolism associated with remission in unipolar major depression. Acta Neurol Scand 2004;110(3):184194.CrossRefGoogle Scholar
Nobler, M.S.Oquendo, M.A.Kegeles, L.S.Malone, K.M.Campbell, C.Sackeim, H.A.et al.Decreased regional brain metabolism after ECT. Am J Psychiatry 2001;158(2):305308.CrossRefGoogle ScholarPubMed
Mayberg, H.S.Lozano, A.M.Voon, V.McNeely, H.E.Seminowicz, D.Hamani, C.et al.Deep brain stimulation for treatment-resistant depression. Neuron 2005;45(5):651660.CrossRefGoogle ScholarPubMed
Cabeza, R.Nyberg, L.Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 2000;12(1):147.CrossRefGoogle ScholarPubMed
Nadel, L.Hardt, O.Update on memory systems and processes. Neuropsychopharmacology 2011;36(1):251273.CrossRefGoogle ScholarPubMed
Burianova, H.Grady, C.L.Common and unique neural activations in autobiographical, episodic, and semantic retrieval. J Cogn Neurosci 2007;19(9):15201534.CrossRefGoogle ScholarPubMed
Cipolotti, L.Shallice, T.Chan, D.Fox, N.Scahill, R.Harrison, G.et al.Long-term retrograde amnesia…the crucial role of the hippocampus. Neuropsychologia 2001;39(2):151172.CrossRefGoogle Scholar
Daselaar, S.M.Veltman, D.J.Rombouts, S.A.R.B.Raaijmakers, J.G.W.Jonker, C.Neuroanatomical correlates of episodic encoding and retrieval in young and elderly subjects. Brain 2003;126(1):4356.CrossRefGoogle Scholar
Nyberg, L.Mapping episodic memory. Behav Brain Res 1998;90(2):107114.CrossRefGoogle ScholarPubMed
Sutin, A.R.Robins, R.W.Phenomenology of autobiographical memories: The Memory Experiences Questionnaire. Memory 2007;15(4):390411.CrossRefGoogle ScholarPubMed
Lee, W.H.Lisanby, S.H.Laine, A.F.Peterchev, A.V.Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model. Eur Psychiatry 2016;36:5564.CrossRefGoogle Scholar
Shahid, S.S.Bikson, M.Salman, H.Wen, P.Ahfock, T.The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation. J Neural Eng 2014;11(3):036002.CrossRefGoogle ScholarPubMed
Bai, S.Loo, C.Al Abed, A.Dokos, S.A computational model of direct brain excitation induced by electroconvulsive therapy: comparison among three conventional electrode placements. Brain Stimul 2012;5(3):408421.CrossRefGoogle ScholarPubMed
Bai, S.Loo, C.Dokos, S.Effects of electroconvulsive therapy stimulus pulsewidth and amplitude computed with an anatomically-realistic head model. Conf proc IEEE Eng Med Biol Soc, 2012 2012;25592562.Google ScholarPubMed
Submit a response

Comments

No Comments have been published for this article.