Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T13:24:18.496Z Has data issue: false hasContentIssue false

Motor system dysfunction in the schizophrenia diathesis: Neural systems to neurotransmitters

Published online by Cambridge University Press:  23 March 2020

R. Abboud
Affiliation:
School of Medicine, Michigan State University Lansing, MI,USA
C. Noronha
Affiliation:
School of Medicine, University of Michigan, Ann Arbor, MI, USA
V.A. Diwadkar*
Affiliation:
Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Suite 5A, Tolan Park Medical Building, 3901 Chrysler Service Drive Detroit, MI48201, USA
*
* Corresponding author.E-mail address:[email protected] (V.A. Diwadkar).
Get access

Abstract

Motor control is a ubiquitous aspect of human function, and from its earliest origins, abnormal motor control has been proposed as being central to schizophrenia. The neurobiological architecture of the motor system is well understood in primates and involves cortical and sub-cortical components including the primary motor cortex, supplementary motor area, dorsal anterior cingulate cortex, the prefrontal cortex, the basal ganglia, and cerebellum. Notably all of these regions are associated in some manner to the pathophysiology of schizophrenia. At the molecular scale, both dopamine and γ-Aminobutyric Acid (GABA) abnormalities have been associated with working memory dysfunction, but particularly relating to the basal ganglia and the prefrontal cortex respectively. As evidence from multiple scales (behavioral, regional and molecular) converges, here we provide a synthesis of the bio-behavioral relevance of motor dysfunction in schizophrenia, and its consistency across scales. We believe that the selective compendium we provide can supplement calls arguing for renewed interest in studying the motor system in schizophrenia. We believe that in addition to being a highly relevant target for the study of schizophrenia related pathways in the brain, such focus provides tractable behavioral probes for in vivo imaging studies in the illness. Our assessment is that the motor system is a highly valuable research domain for the study of schizophrenia.

Type
Review
Copyright
Copyright © European Psychiatric Association 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Saha, SChant, DWelham, JMcGrath, JA Systematic Review of the Prevalence of Schizophrenia. PLoS Med 2005;2(5):e141.CrossRefGoogle ScholarPubMed
Keshavan, MSTandon, RBoutros, NNNasrallah, HASchizophrenia “Just the facts”: what we know in 2008 Part 3: neurobiology. Schizophr Res 2008; 106(2–3): 89107.CrossRefGoogle ScholarPubMed
Goldman-Rakic, PSThe physiological approach: functional architecture of working memory and disordered cognition in schizophrenia. Biol Psychiatry 1999; 46(5): 650661.CrossRefGoogle ScholarPubMed
Izawa, JAsai, TImamizu, HComputational motor control as a window to understanding schizophrenia. Neurosci Res 2016; 104: 4451.CrossRefGoogle ScholarPubMed
Synofzik, MThier, PLeube, DTSchlotterbeck, PLindner, AMisattributions of agency in schizophrenia are based on imprecise predictions about the sensory consequences of one's actions. Brain 2010; 133(1): 262271.CrossRefGoogle ScholarPubMed
Owen, AMMcMillan, KMLaird, ARBullmore, EN-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 2005; 25(1): 4659.CrossRefGoogle ScholarPubMed
Botvinick, MMCohen, JDCarter, CSConflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci 2004; 8(12): 539546.CrossRefGoogle ScholarPubMed
Middleton, FAStrick, PLAnatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 1994; 266(5184): 458461.CrossRefGoogle ScholarPubMed
Woodcock, EAWadehra, SDiwadkar, VANetwork profiles of the dorsal anterior cingulate and dorsal prefrontal cortex in schizophrenia during hippocampal-based associative memory. Front Systems Neurosci 2016;10:32.CrossRefGoogle ScholarPubMed
Witt, STLaird, ARMeyerand, MEFunctional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis. NeuroImage 2008; 42(1): 343356.CrossRefGoogle ScholarPubMed
Middleton, FAStrick, PLBasal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Res Brain Res Rev 2000; 31(2–3): 236250.CrossRefGoogle ScholarPubMed
Hirjak, DThomann, PAKubera, KMWolf, NDSambataro, FWolf, RCMotor dysfunction within the schizophrenia-spectrum: A dimensional step towards an underappreciated domain. Schizophr Res 2015; 169(1–3): 217233.CrossRefGoogle ScholarPubMed
Walther, SPsychomotor symptoms of schizophrenia map on the cerebral motor circuit. Psychiatr Res 2015; 233(3): 293298.CrossRefGoogle ScholarPubMed
Kasparek, TRehulova, JKerkovsky, MSprlakova, AMechl, MMikl, MCortico-cerebellar functional connectivity and sequencing of movements in schizophrenia. BMC Psychiatry 2012; 12(1): 1720.CrossRefGoogle Scholar
Fredericks, CMSaladin, LKPathophysiology of the motor systems: Principles and clinical presentations Philadelphia: F. A. Davis Company; 1996Google Scholar
Howes, ODMcCutcheon, ROwen, MJMurray, RMThe role of genes, stress, and dopamine in the development of schizophrenia. Biol Psychiatry 2017; 81(1): 920.CrossRefGoogle ScholarPubMed
Friston, KBrown, HRSiemerkus, JStephan, KEThe dysconnection hypothesis (2016). Schizophr Res 2016; 176(2–3): 8394.CrossRefGoogle Scholar
Graybiel, AMThe basal ganglia and cognitive pattern generators. Schizophr Bull 1997; 23: 459470.CrossRefGoogle ScholarPubMed
Graybiel, AMThe basal ganglia. Trends Neurosci 1995; 18(2): 6062.CrossRefGoogle ScholarPubMed
Thakkar, KNDiwadkar, VARolfs, M Oculomotor prediction: A window into the psychotic mind. Trends Cogn Sci 2017CrossRefGoogle Scholar
Grefkes, CEickhoff, SBNowak, DADafotakis, MFink, GRDynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. NeuroImage 2008; 41(4): 13821394.CrossRefGoogle ScholarPubMed
Asemi, ARamaseshan, KBurgess, ADiwadkar, VABressler, SLDorsal anterior cingulate cortex modulates supplementary motor area in coordinated unimanual motor behavior. Front Hum Neurosci 2015;9:309.CrossRefGoogle ScholarPubMed
Diwadkar, VAAsemi, ABurgess, AChowdury, ABressler, SLPotentiation of motor sub-networks for motor control but not working memory: Interaction of dACC and SMA revealed by resting-state directed functional connectivity. PLoS ONE 2017;12(3):e5310172.CrossRefGoogle Scholar
Carter, CSHeckers, SNichols, TPine, DSStrother, SOptimizing the design and analysis of clinical functional magnetic resonance imaging research studies. Biol Psychiatry 2008; 64(10): 842849.CrossRefGoogle ScholarPubMed
Bombin, IArango, CBuchanan, RWSignificance and meaning of neurological signs in schizophrenia: two decades later. Schizophr Bull 2005; 31(4): 962977.CrossRefGoogle ScholarPubMed
Peralta, VCuesta, MJNeuromotor abnormalities in neuroleptic-naive psychotic patients: antecedents, clinical correlates, and prediction of treatment response. Compr Psychiatry 2011; 52(2): 139145.CrossRefGoogle Scholar
Hirjak, DWolf, RCWilder-Smith, EPKubera, KMThomann, PAMotor abnormalities and basal ganglia in schizophrenia: evidence from structural magnetic resonance imaging. Brain Topogr 2015; 28(1): 135152.CrossRefGoogle ScholarPubMed
Walther, SStrik, WMotor Symptoms and Schizophrenia. Neuropsychobiology. 2012; 66(2): 77CrossRefGoogle Scholar
Kraepelin, EDementia Praecox. In: Shepeherd, M editors. The Clinical Roots of Schizophrenia, Cambridge: Cambridge University Press; 1986.Google Scholar
Morrens, MDocx, LWalther, SBeyond boundaries: in search of an integrative view on motor symptoms in schizophrenia. Front Psychiatr 2014;5:145.CrossRefGoogle Scholar
Whitty, PFOwoeye, OWaddington, JLNeurological Signs and Involuntary Movements in Schizophrenia: Intrinsic To and Informative on Systems Pathobiology. Schizophr Bull 2009; 35(2): 415424.CrossRefGoogle ScholarPubMed
Pappa, SDazzan, PSpontaneous movement disorders in antipsychotic-naive patients with first-episode psychoses: a systematic review. Psychol Med 2009; 39(7): 10651076.CrossRefGoogle ScholarPubMed
Murray, GKJones, PBMoilanen, KVeijola, JMiettunen, JCannon, TD, et al.Infant motor development and adult cognitive functions in schizophrenia. Schizophr Res 2006; 81(1): 6574.CrossRefGoogle Scholar
Woods, BTKinney, DKYurgelun-Todd, DANeurological “hard” signs and family history of psychosis in schizophrenia. Biol Psychiatr 1991; 30(8): 806816.CrossRefGoogle ScholarPubMed
Armstrong, EA comparative review of the primate motor system. J Mot Behav 1989; 21(4): 493CrossRefGoogle ScholarPubMed
Goldman-Rakic, PSThe physiological approach: functional architecture of working memory and disordered cognition in schizophrenia. Biol Psychiatr 1999; 46(5): 650661.CrossRefGoogle ScholarPubMed
Lewis, DACortical circuit dysfunction and cognitive deficits in schizophrenia--implications for preemptive interventions. Eur J Neurosci 2012; 35(12): 18711878.CrossRefGoogle ScholarPubMed
Dum, RPLevinthal, DJStrick, PLMotor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla. Proc Natl Acad Sci USA. 2016; 113(35): 99229927.CrossRefGoogle ScholarPubMed
Dum, RPStrick, PLMotor areas in the frontal lobe of the primate. Physiol Behav 2002; 77(4–5): 677682.CrossRefGoogle ScholarPubMed
Chouinard, PAPaus, TThe primary motor and premotor areas of the human cerebral cortex. Neuroscientist 2006; 12(2): 143152.CrossRefGoogle ScholarPubMed
Makoshi, ZKroliczak, Gvan Donkelaar, PHuman Supplementary Motor Area Contribution to Predictive Motor Planning. J Mot Behav 2011; 43(4): 303309.CrossRefGoogle ScholarPubMed
Schwartze, MRothermich, KKotz, SAFunctional dissociation of pre-SMA and SMA-proper in temporal processing. NeuroImage 2012; 60(1): 290298.CrossRefGoogle ScholarPubMed
Nachev, PKennard, CHusain, MFunctional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 2008; 9(11): 856869.CrossRefGoogle ScholarPubMed
Picard, NStrick, PLActivation of the supplementary motor area (SMA) during performance of visually guided movements. Cereb Cortex 2003; 13(9): 977986.CrossRefGoogle ScholarPubMed
Hoffstaedter, FGrefkes, CCaspers, SRoski, CPalomero-Gallagher, NLaird, AR, et al.The role of anterior mid-cingulate cortex in cognitive motor control: evidence from functional connectivity analyses. Hum Brain Mapp 2014; 35(6): 27412753.CrossRefGoogle Scholar
Paus, TPrimate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2001; 2(6): 417424.CrossRefGoogle ScholarPubMed
Kronhaus, DMWillshaw, DJThe cingulate as a catalyst region for global dysfunction: a dynamical modelling paradigm. Cereb Cortex 2006; 16(8): 12121224.CrossRefGoogle ScholarPubMed
Hutchison, RMWomelsdorf, TGati, JSLeung, LSMenon, RSEverling, SResting-state connectivity identifies distinct functional networks in macaque cingulate cortex. Cereb Cortex 2012; 22(6): 12941308.CrossRefGoogle ScholarPubMed
Vogt, BAPandya, DNRosene, DLCingulate cortex of the rhesus monkey: I. Cyto-architecture and thalamic afferents. J Comp Neurol 1987; 262(2): 256270.CrossRefGoogle Scholar
Bates, JFGoldman-Rakic, PSPrefrontal connections of medial motor areas in the rhesus monkey. J Comp Neurol 1993; 336(2): 211228.CrossRefGoogle ScholarPubMed
Luppino, GMatelli, MCamarda, RRizzolatti, GCorticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J Comp Neurol 1993; 338(1): 114140.CrossRefGoogle ScholarPubMed
Friedman, ABurgess, ARamaseshan, KEaster, PKhatib, DChowdury, A, et al.Brain network dysfunction in obsessive-compulsive disorder induced by simple uni-manual behavior: The role of the dorsal anterior cingulate cortex. Psychiatr Res Neuroimaging 2017; 26: 615.CrossRefGoogle Scholar
Botvinick, MMBraver, TSBarch, DMCarter, CSCohen, JDConflict monitoring and cognitive control. Psychol Rev 2001; 108(3): 624652.CrossRefGoogle ScholarPubMed
Nakamura, KRoesch, MROlson, CRNeuronal activity in macaque SEF and ACC during performance of tasks involving conflict. J Neurophysiol 2005; 93(2): 884908.CrossRefGoogle ScholarPubMed
Shima, KTanji, JRole for cingulate motor area cells in voluntary movement selection based on Reward. Science 1998; 282(5392): 13351338.CrossRefGoogle ScholarPubMed
Bush, GVogt, BAHolmes, JDale, AMGreve, DJenike, MA, et al.Dorsal anterior cingulate cortex: A role in reward-based decision making. Proc Nat Acad Sci USA 2002; 99(1): 523528.CrossRefGoogle ScholarPubMed
Avanzino, LPelosin, EVicario, CMLagravinese, GAbbruzzese, GMartino, DTime processing and motor control in movement disorders. Front Hum Neurosci 2016;10:631.CrossRefGoogle ScholarPubMed
Morris, LSKundu, PDowell, NMechelmans, DJFavre, PIrvine, MA, et al.Fronto-striatal organization: Defining functional and microstructural substrates of behavioural flexibility. Cortex 2016; 74: 118133.CrossRefGoogle ScholarPubMed
Nambu, ASeven problems on the basal ganglia. Curr Opin Neurobiol 2008; 18(6): 595604.CrossRefGoogle ScholarPubMed
Leisman, GBraun-Benjamin, OMelillo, RCognitive-motor interactions of the basal ganglia in development. Front Syst Neurosci 2014;8:16.CrossRefGoogle ScholarPubMed
Albin, RLYoung, ABPenney, JBThe functional anatomy of basal ganglia disorders. Trends Neurosci 1989; 12(10): 366375.CrossRefGoogle ScholarPubMed
Alexander, GECrutcher, MDDeLong, MRBasal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 1990;85:119.CrossRefGoogle ScholarPubMed
Perez-Costas, EMelendez-Ferro, MRoberts, RCBasal ganglia pathology in schizophrenia: dopamine connections and anomalies. J Neurochem 2010; 113(2): 287302.CrossRefGoogle ScholarPubMed
Howes, ODMurray, RM Schizophrenia: an integrated sociodevelopmental-cognitive model. Lancet 2013CrossRefGoogle Scholar
Brittain, J-SBrown, POscillations and the basal ganglia: motor control and beyond. NeuroImage 2014; 85(2): 637647.CrossRefGoogle ScholarPubMed
Harrington, DHening, WPoizner, H Basal Ganglia: Motor Functions; 2009; 346350.Google Scholar
Patel, NJankovic, JHallett, MSensory aspects of movement disorders. Lancet Neurol 2014; 13(1): 100112.CrossRefGoogle ScholarPubMed
Pollok, BButz, MGross, JSudmeyer, MTimmermann, LSchnitzler, ACoupling between cerebellar hemispheres: Behavioural, anatomic, and functional data. Cerebellum 2006; 5(3): 212219.CrossRefGoogle ScholarPubMed
Batson, MPetridou, NKlomp, DFrens, MNeggers, SSingle session imaging of cerebellum at 7 tesla: Obtaining structure and function of multiple motor subsystems in individual subjects. PLoS ONE 2015;10(8):e933134.CrossRefGoogle ScholarPubMed
Desmond, JEGabrieli, JDWagner, ADGinier, BLGlover, GHLobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci 1997; 17(24): 96759685.CrossRefGoogle ScholarPubMed
Stoodley, CJValera, EMSchmahmann, JDFunctional topography of the cerebellum for motor and cognitive tasks: an fMRI study. NeuroImage 2012; 59(2): 15601570.CrossRefGoogle Scholar
Stoodley, CJValera, EMSchmahmann, JDAn fMRI study of intra-individual functional topography in the human cerebellum. Behav Neurol 2010;23(1–2):6579.CrossRefGoogle ScholarPubMed
Diwadkar, VAMeintjes, EMGoradia, DDodge, NCWarton, CMolteno, CD, et al.Differences in cortico-striatal-cerebellar activation during working memory in syndromal and nonsyndromal children with prenatal alcohol exposure. Hum Brain Mapp 2013; 34(8): 19311945.CrossRefGoogle ScholarPubMed
Bernard, JASeidler, RDHassevoort, KMBenson, BLWelsh, RCWiggins, JL, et al.Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches. Front Neuroanat 2012;6:31.CrossRefGoogle ScholarPubMed
Picazio, SKoch, GIs motor inhibition mediated by cerebello-cortical interactions?. Cerebellum 2015; 14(1): 4749.CrossRefGoogle ScholarPubMed
Middleton, FAStrick, PLBasal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 2000; 31(2): 236250.CrossRefGoogle ScholarPubMed
Salman, MSTsai, PThe role of the pediatric cerebellum in motor functions, cognition, and behavior. Neuroimaging Clin N Am 2016; 26(3): 317329.CrossRefGoogle ScholarPubMed
Ivry, RBSpencer, RMThe neural representation of time. Curr Opin Neurobiol 2004; 14(2): 225232.CrossRefGoogle Scholar
Molinari, MChiricozzi, FRClausi, STedesco, AMDe Lisa, MLeggio, MGCerebellum and detection of sequences, from perception to cognition. Cerebellum 2008; 7(4): 611615.CrossRefGoogle Scholar
Andreasen, NCA unitary model of schizophrenia: Bleuler's “fragmented phrene” as schizencephaly. Arch Gen Psychiatry 1999; 56(9): 781787.CrossRefGoogle ScholarPubMed
Andreasen, NCParadiso, SO’Leary, DS“Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry?. Schizophr Bull 1998; 24(2): 203218.CrossRefGoogle ScholarPubMed
Kodama, SFukuzako, HFukuzako, TKiura, TNozoe, SHashiguchi, T, et al.Aberrant brain activation following motor skill learning in schizophrenic patients as shown by functional magnetic resonance imaging. Psychol Med 2001; 31(6): 10791088.CrossRefGoogle ScholarPubMed
Minzenberg, MJYoon, JHSoosman, SKCarter, CSExcessive contralateral motor overflow in schizophrenia measured by fMRI. Psychiatr Res Neuroimaging 2012; 202(1): 38CrossRefGoogle ScholarPubMed
Rogowska, JGruber, SAYurgelun-Todd, DAFunctional magnetic resonance imaging in schizophrenia: cortical response to motor stimulation. Psychiatr Res 2004; 130(3): 227243.CrossRefGoogle ScholarPubMed
Schroder, JWenz, FSchad, LRBaudendistel, KKnopp, MVSensorimotor cortex and supplementary motor area changes in schizophrenia. A study with functional magnetic resonance imaging. Br J Psychiatry 1995; 167(2): 197201.CrossRefGoogle ScholarPubMed
Muller, JLRoder, CHSchuierer, GKlein, HMotor-induced brain activation in cortical, subcortical and cerebellar regions in schizophrenic inpatients. A whole brain fMRI fingertapping study. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26(3): 421426.CrossRefGoogle ScholarPubMed
Manoach, DSPrefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophr Res 2003; 60: 285298.CrossRefGoogle ScholarPubMed
Diwadkar, VAPruitt, PZhang, ARadwan, JKeshavan, MSMurphy, E, et al.The neural correlates of performance in adolescents at risk for schizophrenia: Inefficiently increased cortico-striatal responses measured with fMRI. J Psychiatr Res 2012; 46: 1221.CrossRefGoogle ScholarPubMed
Martinelli, CRigoli, FShergill, SS Aberrant Force Processing in Schizophrenia. Schizophr Bull 2016CrossRefGoogle Scholar
Exner, CWeniger, GSchmidt-Samoa, CIrle, EReduced size of the pre-supplementary motor cortex and impaired motor sequence learning in first-episode schizophrenia. Schizophr Res 2006;84(2–3):386396.CrossRefGoogle ScholarPubMed
Singh, SGoyal, SModi, SKumar, PSingh, NBhatia, T, et al.Motor function deficits in schizophrenia: an fMRI and VBM study. Neuroradiology 2014; 56(5): 413422.CrossRefGoogle ScholarPubMed
Hirjak, DWolf, RCStieltjes, BHauser, TSeidl, USchröder, J, et al.Cortical signature of neurological soft signs in recent onset schizophrenia. Brain Topogr 2014; 27(2): 296306.CrossRefGoogle ScholarPubMed
Bracht, TSchnell, SFederspiel, ARazavi, NHorn, HStrik, W, et al.Altered cortico-basal ganglia motor pathways reflect reduced volitional motor activity in schizophrenia. Schizophr Res 2013;143(2–3):269276.CrossRefGoogle Scholar
Venkatasubramanian, GJayakumar, PNGangadhar, BNKeshavan, MSNeuroanatomical correlates of neurological soft signs in antipsychotic-naive schizophrenia. Psychiatr Res 2008; 164(3): 215222.CrossRefGoogle ScholarPubMed
Stegmayer, KHorn, HFederspiel, ARazavi, NBracht, TLaimbock, K, et al.Supplementary motor area (SMA) volume is associated with psychotic aberrant motor behaviour of patients with schizophrenia. Psychiatr Res 2014; 223(1): 4951.CrossRefGoogle ScholarPubMed
Walther, SSchappi, LFederspiel, ABohlhalter, SWiest, RStrik, W, et al. Resting-State hyperperfusion of the supplementary motor area in catatonia. Schizophr Bull 2016CrossRefGoogle Scholar
Grafton, STContributions of functional imaging to understanding parkinsonian symptoms. Curr Opin Neurobiol 2004; 14(6): 715719.CrossRefGoogle ScholarPubMed
Walther, SFederspiel, AHorn, HRazavi, NWiest, RDierks, T, et al.Alterations of white matter integrity related to motor activity in schizophrenia. Neurobiol Dis 2011; 42(3): 276283.CrossRefGoogle Scholar
Fornito, AYücel, MDean, BWood, SJPantelis, CAnatomical abnormalities of the anterior cingulate cortex in schizophrenia: Bridging the gap between neuroimaging and neuropathology. Schizophr Bull 2009; 35(5): 973993.CrossRefGoogle ScholarPubMed
Calabrese, DRWang, LHarms, MPRatnanather, JTBarch, DMCloninger, CR, et al.Cingulate gyrus neuroanatomy in schizophrenia subjects and their non-psychotic siblings. Schizophr Res 2008; 104(1): 6170.CrossRefGoogle ScholarPubMed
Szeszko, PRBilder, RMLencz, TAshtari, MGoldman, RSReiter, G, et al.Reduced anterior cingulate gyrus volume correlates with executive dysfunction in men with first-episode schizophrenia. Schizophr Res 2000; 43(2): 97108.CrossRefGoogle ScholarPubMed
Harrison, PJThe neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999; 122(4): 593624.CrossRefGoogle ScholarPubMed
Honey, GDPomarol-Clotet, ECorlett, PRHoney, RAEMcKenna, PJBullmore, ET, et al.Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function. Brain 2005; 128(11): 25972611.CrossRefGoogle ScholarPubMed
Docx, LEmsell, LVan Hecke, WDe Bondt, TParizel, PMSabbe, B, et al.White matter microstructure and volitional motor activity in schizophrenia: A diffusion kurtosis imaging study. Psychiatr Res 2017; 260: 2936.CrossRefGoogle ScholarPubMed
Brandt, GNBonelli, RMStructural neuroimaging of the basal ganglia in schizophrenic patients: A review. Wien Med Wochenschr 2008; 158(3): 8490.CrossRefGoogle ScholarPubMed
Mamah, DWang, LBarch, Dde Erausquin, GAGado, MCsernansky, JGStructural analysis of the basal ganglia in schizophrenia. Schizophr Res 2007; 89(1): 5971.CrossRefGoogle Scholar
Amador, XFKirkpatrick, BBuchanan, RWCarpenter, WTMarcinko, LYale, SAStability of the diagnosis of deficit syndrome in schizophrenia. Am J Psychiatry 1999; 156(4): 637639.Google Scholar
Peralta, VMoreno-Izco, LSanchez-Torres, AGarcia de Jalon, ECampos, MSCuesta, MJCharacterization of the deficit syndrome in drug-naive schizophrenia patients: the role of spontaneous movement disorders and neurological soft signs. Schizophr Bull 2014; 40(1): 214224.CrossRefGoogle ScholarPubMed
Andreasen, NCPierson, RThe role of the cerebellum in schizophrenia. Biol Psychiatry 2008; 64(2): 8188.CrossRefGoogle Scholar
Yang, HHe, HZhong, JMultimodal, MRICharacterisation of schizophrenia: A discriminative analysis. Lancet 2016;388(1):S36.CrossRefGoogle Scholar
Fitzgerald, PBBrown, TLDaskalakis, ZJKulkarni, JA transcranial magnetic stimulation study of inhibitory deficits in the motor cortex in patients with schizophrenia. Psychiatr Res Neuroimaging 2002; 114(1): 1122.CrossRefGoogle ScholarPubMed
Kasparek, TPrikryl, RRehulova, JMarecek, RMikl, MPrikrylova, H, et al.Brain functional connectivity of male patients in remission after the first episode of schizophrenia. Hum Brain Mapp 2013; 34(3): 726737.Google ScholarPubMed
Tran, KDSmutzer, GSDoty, RLArnold, SEReduced Purkinje cell size in the cerebellar vermis of elderly patients with schizophrenia. Am J Psychiatry 1998; 155(9): 12881290.CrossRefGoogle ScholarPubMed
Popa, LSHewitt, ALEbner, TJThe cerebellum for jocks and nerds alike. Front Syst Neurosci 2014;8:113.CrossRefGoogle ScholarPubMed
Madras, BKHistory of the discovery of the antipsychotic dopamine D2 receptor: A basis for the dopamine hypothesis of schizophrenia. J Hist Neurosci 2013; 22(1): 6278.CrossRefGoogle ScholarPubMed
Baumeister, AAFrancis, JLHistorical development of the dopamine hypothesis of schizophrenia. J Hist Neurosci 2002; 11(3): 265277.CrossRefGoogle ScholarPubMed
Seeman, PLee, TAntipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 1975; 188(4194): 12171219.CrossRefGoogle ScholarPubMed
Fallon, JHOpole, IOPotkin, SGThe neuroanatomy of schizophrenia: circuitry and neurotransmitter systems. Clin Neurosci Res 2003; 3(1): 77107.CrossRefGoogle Scholar
Meador-Woodruff, JHHaroutunian, VPowchik, PDavidson, MDavis, KLWatson, SJDopamine receptor transcript expression in striatum and prefrontal and occipital cortex: Focal abnormalities in orbitofrontal cortex in schizophrenia. Arch Gen Psychiatry 1997; 54(12): 10891095.CrossRefGoogle Scholar
McGowan, SLawrence, ADSales, TQuested, DGrasby, PPresynaptic dopaminergic dysfunction in schizophrenia: A Positron Emission Tomographic [18F] Fluorodopa study. Arch Gen Psychiatry 2004; 61(2): 134142.CrossRefGoogle ScholarPubMed
Howes, ODKapur, SThe dopamine hypothesis of schizophrenia: Version III-The Final common pathway. Schizophr Bull 2009; 35(3): 549562.CrossRefGoogle ScholarPubMed
Laruelle, MImaging dopamine transmission in schizophrenia: A review and meta-analysis. Q J Nucl Med 1998; 42(3): 211Google Scholar
Cazorla, Mde Carvalho, FDChohan, MOShegda, MChuhma, NRayport, S, et al.Dopamine D2 receptors regulate the anatomical and functional balance of basal ganglia circuitry. Neuron 2014; 81(1): 153164.CrossRefGoogle ScholarPubMed
Seeman, PSeeman, MVSchizophrenia and the supersensitive synapse. Neuropsychiatry 2011; 1(3): 233242.CrossRefGoogle Scholar
Tune, LEWong, DFPearlson, GStrauss, MYoung, TShaya, EK, et al.Dopamine D2 receptor density estimates in schizophrenia: a positron emission tomography study with 11C-N-methylspiperone. Psychiatr Res 1993; 49(3): 219CrossRefGoogle ScholarPubMed
Suhara, TOkubo, YYasuno, FSudo, YInoue, MIchimiya, T, et al.Decreased dopamine D2 receptor binding in the anterior cingulate cortex in schizophrenia. Arch Gen Psychiatry 2002; 59(1): 2530.CrossRefGoogle Scholar
Yang, YKChiu, NTChen, MChen, CCYeh, TLLee, IHCorrelation between fine motor activity and striatal dopamine D 2 receptor density in patients with schizophrenia and healthy controls. Psychiatr Res Neuroimaging 2003; 123(3): 191197.CrossRefGoogle Scholar
Silverstein, BBressler, SDiwadkar, VAInferring the dysconnection syndrome in schizophrenia: Interpretational considerations on methods for the network analyses of fMRI data. Front Psychiatry 2016;7:132.CrossRefGoogle Scholar
Morris, SECuthbert, BNResearch Domain Criteria: cognitive systems, neural circuits, and dimensions of behavior. Dialogues Clin Neurosci 2012; 14(1): 2937.Google ScholarPubMed
Morris, SEVaidyanathan, UCuthbert, BNChanging the diagnostic concept of schizophrenia: The NIMH research domain criteria initiative. Nebr Symp Motiv 2016; 63: 225252.CrossRefGoogle ScholarPubMed
Sprooten, ERasgon, AGoodman, MCarlin, ALeibu, ELee, WH, et al.Addressing reverse inference in psychiatric neuroimaging: Meta-analyses of task-related brain activation in common mental disorders. Hum Brain Mapp 2017; 38(4): 18461864.CrossRefGoogle ScholarPubMed
Submit a response

Comments

No Comments have been published for this article.