Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-16T05:20:39.421Z Has data issue: false hasContentIssue false

Potencial evocado cognitivo P300 y actividad del receptor 5-HT1A en la depresión

Published online by Cambridge University Press:  12 May 2020

M. Hansenne
Affiliation:
Unidad Psiquiátrica, CHU Sart Turnan, 4000Lieja, Bélgica
M. Ansseau
Affiliation:
Unidad Psiquiátrica, CHU Sart Turnan, 4000Lieja, Bélgica
Get access

Resumen

La identificación de las estructuras cerebrales y los neurotransmisores responsables de la generación de la onda P300, de su modulación o de ambas cosas, podría llevar a implicaciones clínicas importantes. Puesto que las perturbaciones de la serotonina parecen desempeñar un papel crítico en la depresión, el propósito del estudio era evaluar las posibles relaciones entre el potencial evocado cognitivo cerebral P300 y la actividad serotonérgica en la depresión. El estudio se realizó entre 45 pacientes hospitalizados con depresión mayor, y la actividad serotonérgica se evaluó por la respuesta de la prolactina (PRL) al flesinoxán (un agonista del receptor 5-HT1A). Los resultados mostraron una correlación negativa significativa entre la amplitud de la onda P300 y la respuesta de la PRL al flesinoxán (r = -0,40, P = 0,007 en Cz; r = -0,47, P = 0,001 en Pz). Por contraste, tanto la latencia de la onda P300 como el tiempo de reacción no estaban relacionados con la respuesta endocrina. Este estudio apoya la existencia de un papel para el receptor 5-HT1A en la modulación neurobiológica de la amplitud de la onda P300.

Type
Artículo original
Copyright
Copyright © European Psychiatric Association 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliografía

Donchin, E, Coles, MHG. Is the P300 component a manifestation of context updating? Behav Brain Sci 1988; 11: 357–74.CrossRefGoogle Scholar
Picton, TW. The P300 wave of the human event-related potential. J Clin Neurophysiol 1992; 9: 456–79.CrossRefGoogle ScholarPubMed
Verleger, R.Event-related potentials and cognition: a critique of the context updating hypothesis and an alternative interpretation of P3. Behav Brain Sci 1988; 11: 343–56.CrossRefGoogle Scholar
Johnson, R.A triarchic model of P300 amplitude. Psychophysiology 1986; 23: 367–84.CrossRefGoogle ScholarPubMed
Sommer, W, Matt, J.Awareness of P300-related cognitive processes: a signal detection approach. Psychophysiology 1990; 27: 575–85.CrossRefGoogle ScholarPubMed
McCarthy, G, Donchin, E.A metric for thought: a comparison of P300 latency and reaction time. Science 1981; 211:7780.CrossRefGoogle ScholarPubMed
Smulders FTY, Kok, A, Kenemans, JD, Bashore, TR. The-temporal selectivity of additive factor effects on the reaction process revealed in ERP component latencies. Acta Psychol 1995; 90: 97109-Google Scholar
Kutas, M, McCarthy, G, Donchin, E.Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science 1977; 197: 792–5.CrossRefGoogle ScholarPubMed
Diner, CB, Holcomb, PJ, Dykman, RA. P300 in major depressive disorder. Psychiatry Res 1985; 15: 175–84.CrossRefGoogle ScholarPubMed
Muir, WJ, St Clair, DM, Blackwood, DHR. Long-latency auditory event-related potentials in schizophrenia and in bipolar and unipolar affective disorder. Psychol Med 1991; 21: 867–79.CrossRefGoogle ScholarPubMed
Gangadhar, BN, Ancy, J, Janakiramaiah, N, Umapathy, C.P300 amplitude in non-bipolar, melancholic depression. J Affect Disord 1993; 28: 5760.CrossRefGoogle ScholarPubMed
Giedke, H, Bolz, J, Heimann, H.Evoked potentials, expectancy wave'and skin resistance in depressed patients and healthy Controls. Pharmacopsychiatry 1980; 13: 91101.CrossRefGoogle ScholarPubMed
Plooij-Van, G.Evoked potential correlates of information Processing and habituation in depressive illness. Ann N Y Acad Sci 1984; 425; 609–17.Google Scholar
El Massioui, F, Lesévre, N.Attention impairment and psychomotor retardation in depressed patients: an event-related stndy. Electroencephalogr Clin Neurophysiol 1988; 70: 4655.CrossRefGoogle Scholar
Have, G, Kolbeinson, H, Pétursson, H.Dementia and depression in oíd age: psychophysiological aspects. Acta Psychiatr Scand 1991; 33:329–33.CrossRefGoogle Scholar
Bruder, GE, Towey, JP, Stewart, JW, Friedman, D, Tenke, C, Quitkin, FM. Event-related potentials in depression: intluence of task, stimulus hemifield and clinical features on P3 latency. Biol Psychiatry 1991; 30: 233–46.CrossRefGoogle Scholar
Gordon, E, Kraiuhin, C, Harris, A, Meares, R.Howson, A.The differential diagnosis of dementia using P300 latency. Biol Psychiatry 1986; 21: 1123–32.CrossRefGoogle ScholarPubMed
Patterson, JV, Mikaleski, HJ. Starr, A.Latency variability of the components of auditory event related potentials to infrequent stimuli in aging, Alzheimer type dementia and depression. Electroencephalogr Clin Neurophysiol 1988; 71: 450–60.CrossRefGoogle ScholarPubMed
Stantosh, PJ, Malhotra, S, Raghunathan, M, Mehra, YN. A study of P300 in melancholic depression. Correlation with psychotic features. Biol Psychiatry 1994; 35: 474–9.CrossRefGoogle Scholar
Pierson, A, Partiot, A, Ammar, S, Dodin, V, Loas, G, Jouvent, R, et al. ERP differences between anxious-impulsive and blunted-affect depressive inpatients. In: Ansseau, M, von Frenckell, R, Frank, G, eds. Biological markers of depression: State of the art. Amsterdam: Elsevier; 1991, p. 1219.Google Scholar
Pierson, A, Ragot, R, Martinerie, J, Partiot, A, Renault, B, Jouvent, R.Heterogeneity of information-processing alterations according to dimensions of depression: an event-related potentials study. Biol Psychiatry 1996; 40: 98115.CrossRefGoogle Scholar
Hansenne, M, Pitchot, W, González-Moreno, A, González-Torréalas, J, Mirel, J, Ansseau, M.Psychophysiological correlates of suicidal behavior in depression. A preliminary study. Neuropsychology 1994; 30: 13.Google ScholarPubMed
Hansenne, M, Pitchot, W, González-Moreno, A, Urcelay-Zaldua, I, Ansseau, M.Suicidal behavior in depressive disorder: an event-related potential study. Biol Psychiatry 1996; 40: 116–22.CrossRefGoogle Scholar
Hammond, EJ, Meador, KJ, Aung-Din, R, Wilder, BK. Role of the cholinergic system in the generation of human cognitive evoked potentials. Neurology 1987; 37: 346–50.CrossRefGoogle Scholar
Meador, KJ. Cholinergic, serotonergic, and gabaergic effects on the ERP. In: Karmos, G, Molnár, M, Csépe, V, Czigler, I, Desmedt, EJ, eds. Perspectives of event-related potentials research. Electroencephalogr Clin Neurophysiol Supl 44 Amsterdam: Elsevier; 1995: 1515.Google Scholar
Meador, KJ, Loring, DW, Davis, HC, Setli, KD, Patel, BR, Adams, RJ. Cholinergic and serotonergic effects on P3 potential and recent'memory. J Clin Exp Neuropsychol 1989; 11: 252–60.CrossRefGoogle Scholar
Jonkman, LM, Kemmer, C, Vertaben, MN, Koelega, HS, Camfferman, G, van der Gaag, RJ, et al. Effects of tnethylphenidate on event-related potentials and performance of attention-deficit hyperactivity disorder children in auditory and visual selective attention tasks. Biol Psychiatry 1997; 41: 690702.CrossRefGoogle ScholarPubMed
Swick, D, Pineda, A, Foote, SL. Effects of systematic clo-nidine on auditory event-related potentials in squired monkeys. Brain Res Bull 1994; 33: 7986.CrossRefGoogle Scholar
Semlitsch, HV, Anderer, P, Saletu, B.Acute effects of the anxiolytics sundone and alprazolam on cognitive Processing utilizing topographic mapping of event-related brain potentials (P300 in healthy subjects). Eur J Clin Pharmacol 1995; 49: 183–91.CrossRefGoogle Scholar
Hansenne, M, Pitchot, W, González-Moreno, A, Papart, P, Timsit-Berthier, M, Ansseau, M.Catecholaminergic function and P300 ampitude in major depressive disorder (P300 and catecholamines). Electroencephalogr Clin Neurophysiol 1995; 96: 194–6.CrossRefGoogle Scholar
Pritchard, WS, Raz, N, August, GJ. No effect of chronic fenfluramine on the P300 component of the event-related potential. In J Neurosci 1986; 35: 105–10.Google Scholar
Unrug, A, VanLuijtelaar, EL, Coles, MG, Coenen, AM. Event-related potentials in a passive and active auditory condition: effects of diazepam and buspirone on slow wave positivity. Biol Psychol 1997; 46: 101–11.CrossRefGoogle Scholar
Ito, J, Yamoa, S, Fukuda, H, Mimori, Y, Yakamura, S.The P300 event-related potentials in dementia of the Alzheimer type. Correlations between P300 and monoamine metabolites. Electroencephalogr Clin Neurophysiol 19990; 33: 174–8.Google Scholar
Meador, KJ, Foring, DW, Hendrix, N, Nichols, ME, Oberzan, R, Moore, EE. Synergistic anticholinergic and antiseroto-nergic effects in human. J Clin Exp Neuropsychol 1995; 17: 611–21.CrossRefGoogle Scholar
Hansenne, M, Pitchot, W, Papart, P, Ansseau, M.Serotonergic modulation of the P300 event-related brain potential. Hum Psychopharmacol 1998; 13: 239343.3.0.CO;2-V>CrossRefGoogle Scholar
American Psychiatric Association. Diagnostic and statistical manual of mental disorders, DSM-IV, fourth edition. Washington, DC: American Psychiatric Association; 1994.Google Scholar
Hamilton, M.A rating scale of depression. J Neurol Neurosurg Psychiatry 1960; 23: 56–52.CrossRefGoogle Scholar
Raine, A, Venables, PH. Enhanced P3 evoked potentials and longer recovery times in psychopaths. Psychophysiology 1998; 25: 30–8.CrossRefGoogle Scholar
New, AS, Tresman, RL, Mitropoulou, V, Benishay, DS, Coccaro, EF, Silverman, J, et al. Serotonin fuction and self-injurious behavior in personality disorder patients. Psychiatry Res 1998; 69: 1726.CrossRefGoogle Scholar
Coccaro, E, Siever, LS, Klar, HM, Maurer, G, Cochran, K, Cooper, TB, et al. Serotonergic studies in patients with affective and personality disorders: correlates with suicidal and impulsive aggressive behavior. Arch Gen Psychiatry 1989; 46: 587–99.CrossRefGoogle ScholarPubMed
Coccaro, EF, Gabriel, S, Siever, LJ. Buspirone challenge: Preliminary evidence for a role for central 5-HT1A receptor function in impulsive aggresive behavior in human. Psychopharmacol Bull 1990; 26: 393405.Google Scholar
Hansenne, M, Pitchot, W, González-Moreno, A, Reggers, J, Machurot, PY, Ansseau, M.Harm avoidance of the tridimensional personality questionnaire and serotonin-lA activity in depressed patients. Biol Psychiatry 1987; 42: 959–61.CrossRefGoogle Scholar
Cassel, JC, Jeltsch, H.Serotonergic modulation of cholinergic function in the central nervous system: cognitive implications. Neuroscience 1995; 69: 141.CrossRefGoogle ScholarPubMed
Harder, JA, Maclean, CJ, Alder, JT, Francis, PT, Ridley, RM. The 5-HT1A antagonist, WAY 100635, ameliorates the cognitive impairment induced by fornix transection in the marmoset. Psychopharmacology 1996; 127: 245–54.Google ScholarPubMed
Buhot, MC. Serotonin receptors in cognitive behaviours. Curr Opin Neurobiol 1997; 7: 243–54.CrossRefGoogle Scholar
Polich, J.P300 in the evaluation of aging and dementia. In: Brunia, CHM, Mulder, G, Vertaben, MN, eds. Event-related brain research. Electroencephalogr Clin Neurophysiol Suppl 42. Amsterdam: Elsevier; 1991: 30423.Google ScholarPubMed
Hasbroucq, T, Tihet, P, Blin, O, Possamai, CA. Serotonin and human information processing: fluvoxamine can improve reaction time performance. Neurosci Lett 1997; 229: 204–8.CrossRefGoogle ScholarPubMed