Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T16:49:16.016Z Has data issue: false hasContentIssue false

Compensación interhemisférica: hipótesis de los efectos inducidos por la EMT en las áreas relacionadas con el lenguaje

Published online by Cambridge University Press:  12 May 2020

Jamila Andoh
Affiliation:
INSERM, U797, Unidad de Investigación “Neuroimagen y Psiquiatría”, IFR49, Orsay, Francia. CEA, Unidad U797 “Neuroimagen y Psiquiatría”, Departamento Fréderic Joliot y Neurospin, 12BM, Orsay, Francia Universidad Sur de París, UMR U797, París, Francia Universidad Descartes de París, UMR U797, París, Francia Centro Cerebral y Corporal, Universidad de Nottingham, RU
Jean-Luc Martinot
Affiliation:
INSERM, U797, Unidad de Investigación “Neuroimagen y Psiquiatría”, IFR49, Orsay, Francia. CEA, Unidad U797 “Neuroimagen y Psiquiatría”, Departamento Fréderic Joliot y Neurospin, 12BM, Orsay, Francia Universidad Sur de París, UMR U797, París, Francia Universidad Descartes de París, UMR U797, París, Francia
Get access

Resumen

La estimulación magnética transcraneal repetida (EMTr) aplicada en las regiones cerebrales responsables del procesamiento del lenguaje se utiliza para reducir potencialmente las alucinaciones auditivas en pacientes con esquizofrenia y para investigar la organización funcional de las áreas relacionadas con el lenguaje. No obstante, la variabilidad del efecto es notable entre los distintos estudios y entre los sujetos. Además, los mecanismos de acción del EMTr se conocen poco.

En este artículo revisamos varios factores relacionados con la organización estructural y funcional del cerebro que pueden influir en los efectos inducidos por la EMTr. Luego, por analogía con los estudios de afasia y con los cambios plásticos adaptativos de los hemisferios derecho e izquierdo después de la recuperación de la afasia, se propone una hipótesis sobre los mecanismos de EMTr en áreas relacionadas con el lenguaje (por ejemplo, las áreas de Wernicke y de Broca). Creemos que la interferencia local inducida por la EMTr en las areas relacionadas con el lenguaje puede ser análoga al ictus afásico y puedan dar lugar a una reorganización funcional en las áreas conectadas con la lesión virtual para la recuperación del lenguaje.

Type
Artículo original
Copyright
Copyright © European Psychiatric Association 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliografía

Abo, MSenoo, AWatanabe, SMiyano, S. Doseki, KSasaki, Net al.Language-related brain function during word repetition in post-stroke aphasics. Neuroreport 2004;15:1891–4.CrossRefGoogle ScholarPubMed
Aboitiz, FGarcia, R. The anatomy of language revisited. Biol Res 1997;30:171–83.Google ScholarPubMed
Aleman, ASommer, IEKahn, RS. Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of resistant auditory hallucinations in schizophrenia: a meta-analysis. J Clin Psychiatry 2007;68:416–21.CrossRefGoogle ScholarPubMed
Andoh, JArtiges, EPallier, CRiviere, DMangin, JFCachia, Aet al.Modulation of language areas with functional MR image-guided magnetic stimulation. Neuroimage 2006;29:619–27.CrossRefGoogle ScholarPubMed
Andoh, JArtiges, EPallier, C. Riviere, DMangin, JFPaillere-Martinot, MLet al.Priming frequencies of transcranial magnetic stimulation over Wernicke's area modulate word detection. Cereb Cortex 2008; 18(1):210–6.CrossRefGoogle ScholarPubMed
Andoh, JCachia, AMangin, JFArtiges, ECointepas, Y. Paillere-Martinot, MLet al. A triangulation-based MR1 guided method for TMS coil positioning. Brain Stimulation, submitted for publication.Google Scholar
Barrett, JDella-Maggiore, VChouinard, PAPaus, T. Mechanisms of action underlying the effect of repetitive transcranial magnetic stimulation on mood: behavioral and brain imaging studies. Neuropsychopharmacology 2004;29:1172–89.Google ScholarPubMed
Barta, PEPearlson, GDPowers, RERichards, SSTune, LE. Auditory hallucinations and smaller superior temporal gyral volume in schizophrenia. Am J Psychiatry 1990;147:1457–62.Google Scholar
Binder, J. The new neuroanatomy of speech perception. Brain 2000;123(Pt 12):2371–2.CrossRefGoogle ScholarPubMed
Binder, JRFrost, JAHammeke, TACox, RWRao, SMPrieto, T. Human brain language areas identified by functional magnetic resonance imaging. J Neurosci 1997;17:353–62.CrossRefGoogle ScholarPubMed
Bohning, DEHe, LGeorge, MSEpstein, CM. Deconvolution of transcranial magnetic stimulation (TMS) maps. J Neural Transm 2001;108:3552.CrossRefGoogle ScholarPubMed
Bohning, DEShastri, AMcConnell, KANahas, ZLorberbaum, JPRoberts, DRet al.A combined TMS/fMRI study of intensity-dependent TMS over motor cortex. Biol Psychiatry 1999;45:385–94.CrossRefGoogle ScholarPubMed
Catani, MHoward, RJPajevic, SJones, DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 2002;17:7794.CrossRefGoogle Scholar
Catani, MJones, DKffytche, DH. Perisylvian language networks of the human brain. Ann Neurol 2005;57:816.CrossRefGoogle Scholar
Chen, R. Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res 2004;154:110.CrossRefGoogle ScholarPubMed
Copolov, DLSeal, MLMaruff, PUlusoy, RWong, MTTochon-Danguy, HJet al.Cortical activation associated with the experience of auditory hallucinations and perception of human speech in schizophrenia: a PET correlation study. Psychiatry Res 2003; 122:139–52.CrossRefGoogle ScholarPubMed
Crinion, JPrice, CJ. Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke. Brain 2005;128:2858–71.CrossRefGoogle ScholarPubMed
Devlin, JTMatthews, PMRushworth, ME. Semantic processing in the left inferior prefrontal cortex: a combined functional magnetic resonance imaging and transcranial magnetic stimulation study. J Cogn Neurosci 2003;15:7184.CrossRefGoogle ScholarPubMed
Fernandez, BCardebat, DDemonet, JFJoseph, PAMazaux, JMBarat, Met al.Functional MRI follow-up study of language processes in healthy subjects and during recovery in a case of aphasia. Stroke 2004;35:2171–6.CrossRefGoogle Scholar
Fries, WDanek, AScheidtmann, KHamburger, C. Motor recovery following capsular stroke. Role of descending pathways from multiple motor areas. Brain 1993; 116:369–82.CrossRefGoogle ScholarPubMed
Gerloff, CCohén, LGFloeter, MKChen, RCorwell, BHallett, M. Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract. J Physiol 1998;510:249–59.CrossRefGoogle ScholarPubMed
Gernsbacher, MAKaschak, PA. Neuroimaging studies of language production and comprehension. Annu Rev Psychol 2003;54:91114.CrossRefGoogle ScholarPubMed
Golding, E. The effect of unilateral brain lesión on reasoning. Cortex 1981;17:3140.Google ScholarPubMed
Gugino, LDRomero, JRAglio, LTitone, DRamirez, MPascual-Leone, Aet al.Transcranial magnetic stimulation coregistered with MRI: a comparison of a guided versus blind stimulation technique and its effect on evoked compound muscle action potentials. Clin Neurophysiol 2001;112:1781–92.CrossRefGoogle ScholarPubMed
Hausmann, AWeis, CMarksteiner, JHinterhuber, HHumpel, C. Chronic repetitive transcranial magnetic stimulation enhances c-fos in the parietal cortex and hippocampus. Brain Res Mol Brain Res 2000;76:355–62.Google ScholarPubMed
Heiss, WDKarbe, HWeber-Luxenburger, GHerholz, KKessler, JPietrzyk, Uet al.Speech-induced cerebral metabolic activation reflects recovery from aphasia. J Neurol Sci 1997;145:213–7.CrossRefGoogle ScholarPubMed
Hilgetag, CCThéoret, HPascual-Leone, A. Enhanced visual spatial attention ipsilateral to rTMS induced ‘virtual lesions’ of human parietal cortex. Nature 2001;4:953–7.Google ScholarPubMed
Hoffman, REHawkins, KAGueorguieva, RBoutros, NNRachid, FCarroll, Ket al.Transcranial magnetic stimulation of left temporoparietal cortex and medication-resistant auditory hallucinations. Arch Gen Psychiatry 2003;60:4956.CrossRefGoogle ScholarPubMed
Humphries, CBinder, JRMedler, DALiebenthal, E. Time course of semantic processes during sentence comprehension: an fMRI study. Neuroimage 2007;36:924–32.CrossRefGoogle ScholarPubMed
Johansen-Berg, HRushworth, MFBogdanovic, MDKischka, UWimalaratna, SMatthews, PM. The role of ipsilateral promotor cortex in hand movement after stroke. Proc Nati Acad Sci USA 2002;99:14518–23.CrossRefGoogle Scholar
Kapur, N. Paradoxical functional facilitation in brain-behaviour research. A critical review. Brain 1996; 119:1775–90.CrossRefGoogle ScholarPubMed
Knecht, SFloel, ADrager, BBreitenstein, CSommer, JHenningsen, Het al.Degree of language lateralization determines susceptibility to unilateral brain lesions. Nat Neurosci 2002;5:695–9.CrossRefGoogle ScholarPubMed
Kobayashi, MHutchinson, SThéoret, HSchlaug, GPascual-Leone, A. Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements. Neurology 2004;62:91–8.Google ScholarPubMed
Lancaster, JLNarayama, SWenzel, DLuckemeyer, JRoby, J, Fox R Evaluation of an image-guided, robotically positioned transcranial magnetic stimulation system. Hum Brain Mapp 2004;22:329–40.Google Scholar
Mclntosh, AMSemple, DTasker, KHarrison, LKOwens, DGJohnstone, ECet al.Transcranial magnetic stimulation for auditory hallucinations in schizophrenia. Psychiatry Res 2004;127:917.CrossRefGoogle Scholar
Mesulam, MM. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 1990;28:597613.CrossRefGoogle Scholar
Mesulam, MM. From sensation to cognition. Brain 1998; 121:1013–52.CrossRefGoogle Scholar
Munchau, ABloem, BRIrlbacher, KTrimble, MRRothwell, JC. Functional connectivity of human promotor amd motor cortex explored with repetitive transcranial magnetic stimulation. J Neurosci 2002;22:554–61.CrossRefGoogle Scholar
Musso, MWeiller, CKiebel, SMuller, SPBulau, PRijntjes, M. Training induced brain plasticity in aphasia. Brain 1999;122:1781–90.CrossRefGoogle ScholarPubMed
Naeser, MAMartin, PINicholas, MBaker, EHSeekins, HKobayashi, Met al.Improved picture narming in chronic aphasia after TMS to part of right Broca's area: an open-protocol study. Brain Lang 2005;93:95105.CrossRefGoogle ScholarPubMed
Nixon, PLazarova, JHodinott-Hill, IGough, PPassingham, R. The inferior frontal gyrus and phonological processing: an investigation using RTMS. J Cogn Neurosci 2004;16:289300.CrossRefGoogle ScholarPubMed
O'Shea, JJohansen-Berg, HTrief, DGobel, SRushworth, MF. Functionally specific reorganization in human promotor cortex. Neuron 2007;54:479–90.CrossRefGoogle Scholar
Parker, ESWeingartner, H. Retrograde facilitation of human memory by drugs. In: Weingartner, HParker, ES, editors. Memory consolidation: psychobiology of cogrution. Hillsdale (NJ): Lawrence Erlbaum; 1984. p. 231–51.Google Scholar
Parker, GJLuzzi, SAlexander, DCWheeler-Kingshott, CACiccarelli, OLambon Ralph, MA. Lateralization of ventral and dorsal auditory-language pathways in the human brain. Neuroimage 2005;24:656–66.CrossRefGoogle Scholar
Pascual-Leone, ABartres-Faz, DKeenan, JP. Transcranial magnetic stimulation: studying the brain-behaviour by induction of “virtual lesions”. Philos Trans R Soc Lond B Biol Sci 1999 :354:1229–38.CrossRefGoogle Scholar
Paus, T. Inferring causality in brain images: a perturbation approach. Philos Trans R Soc Lond B Biol Sci 2005 :360:1109–14.CrossRefGoogle Scholar
Paus, TCastro-Alamancos, MAPetrides, M. Cortito-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. Eur J Neurosci 2001;14:1405–11.CrossRefGoogle ScholarPubMed
Paus, TJech, RThompson, CJComeau, RPeters, TEvans, AC. Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci 1997;17:3178–84.CrossRefGoogle ScholarPubMed
Paus, TWolforth, M. Transcranial magnetic stimulation during PET: reaching and verifying the target site. Hum Brain Mapp 1998;6:399- 402.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Peck, KKMoore, ABCrosson, BAGaiefsky, MGopinath, KSWhite, Ket al.Functional magnetic resonance imaging before and after aphasia therapy: shifts in hemodynamic time to peak during an overt language task. Stroke 2004;35:554–9.CrossRefGoogle ScholarPubMed
Plaze, MBartrés-Faz, DMartinot, JLJanuel, DBellivier, FDe Beaurepaire, Ret al.Left superior temporal gyrus activation during sentence perception negatively correlates with auditory hallucination severity in schizophrenia patients. Schizophr Res 2006;87:109–15.CrossRefGoogle ScholarPubMed
Price, CJCrinion, J. The latest on functional imaging studies of aphasic stroke. Curr Opin Neurol 2005;18:429–34.CrossRefGoogle ScholarPubMed
Robertson, EMTheoret, HPascual-Leone, A. Studies in cognition: the problems solved and created by transcranial magnetic stimulation. J Cogn Neurosci 2003;15:948–60.CrossRefGoogle ScholarPubMed
Rosen, HJPetersen, SELinenweber, MRSnyder, AZWhite, DAChapman, Let al.Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology 2000;55:1883–94.CrossRefGoogle ScholarPubMed
Rounis, ELee, LSiebner, HRRowe, JBFriston, KJRothwell, JCet al.Frequency specific changes in regional cerebral blood flow and motor system connectivity following rTMS to the primary motor cortex. Neuroimage 2005;26:164–76.CrossRefGoogle ScholarPubMed
Sakai, KLNoguchi, YTakeuchi, TWatanabe, E. Selective priming of syntactic processing by event-related transcranial magnetic stimulation of Broca's area. Neuron 2002;35:1177–82.CrossRefGoogle ScholarPubMed
Shergill, SSBrammer, MJWilliams, SCMurray, RMMcGuire, PK. Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch Gen Psychiatry 2000;57:1033–8.CrossRefGoogle ScholarPubMed
Sparing, RMottaghy, FMHungs, MBrugmann, MFoltys, HHaber, Wet al.Repetitive transcranial magnetic stimulation effects on language function depend on the stimulation parameters. J Clin Neurophysiol 2001;18:326–30.CrossRefGoogle ScholarPubMed
Suzuki, MYuasa, SMinabe, YMurata, MKurachi, M. Left superior temporal blood flow increases in schizophrenic and schizophreniform patients with auditory hallucination: a longitudinal case study using 123I-IMP SPECT. Eur Arch Psychiatry Clin Neurosci 1993;242:257–61.CrossRefGoogle ScholarPubMed
Theoret, HKobayashi, MValero-Cabre, APascual-Leone, A. Exploring paradoxical functional facilitation with TMS. Suppl Clin Neurophysiol 2003;56:211–9.CrossRefGoogle ScholarPubMed
Thiel, AHabedank, BHerholz, KKessler, JWinhuisen, LHaupt, WFet al.From the left to the right: how the brain compensates Progressive loss of language function. Brain Lang 2006;98:5765.CrossRefGoogle ScholarPubMed
Thiel, AHaupt, WFHabedank, BWinhuisen, LHerholz, KKessler, Jet al.Neuroimaging-guided rTMS of the left inferior frontal gyrus interferes with repetition priming. Neuroimage 2005;25:815–23.CrossRefGoogle ScholarPubMed
Thiel, AHerholz, KKoyuncu, AGhaemi, MKracht, LWHabedank, Bet al.Plasticity of language networks in patients with brain tumors: a positron emission tomography activation study. Ann Neurol 2001;50:620–9.CrossRefGoogle ScholarPubMed
Thiel, ASchumacher, BWienhard, KGairing, SKracht, LWWagner, Ret al.Direct demonstration of transcallosal disinhibition in language networks. J Cereb Blood Flow Metab 2006;26:1122–7.CrossRefGoogle ScholarPubMed
Thomas, CAltenmuller, EMarckmann, GKabrs, JDichgans, J. Language processing in aphasia: changes in lateralization patterns during recovery reflect cerebral plasticity in adults. Electroencephalogr Clin. Neurophysiol 1997;102:8697.CrossRefGoogle ScholarPubMed
Thulborn, KRCarpenter, PAJust, MA. Plasticity of language-related brain function during recovery from stroke. Stroke 1999;30:749–54.CrossRefGoogle Scholar
Topper, RMottaghy, FMBrugmann, MNoth, JHaber, W. Facilitation of picture naming by focal transcranial magnetic stimulation of Wernicke's area. Exp Brain Res 1998;121:371–8.Google ScholarPubMed
Van Petten, CLuka, BJ. Neural localization of semantic context effects in electromagnetic and hemodynamic studies. Brain Lang 2006;97:279–93.CrossRefGoogle ScholarPubMed
Voets, NLAdcock, JEFlitney, DEBehrens, TEHart, YStacey, Ret al.Distinct right frontal lobe activation in language processing following left hemisphere injury. Brain 2006;129:754–66.CrossRefGoogle ScholarPubMed
Warrington, EKWeiskrantz, L. Further analysis of the prior learning effect in amnesic patients. Neuropsychologia 1978;16:169–77.CrossRefGoogle ScholarPubMed
Weiller, CChollet, FFriston, KJWise, RJSFrackowiak, RSJ. Functional reorganizaron of the brain in recovery from striatocapsular infarction in man. Ann Neurol 1992;31:463–72.CrossRefGoogle ScholarPubMed
Woodruff, PWWright, ICBullmore, ETBrammer, MHoward, RJWilliams, SCet al.Auditory hallucinations and the temporal cortical response to speech in schizophrenia: a functional magnetic resonance imaging study. Am J Psychiatry 1997;154:1676–82.CrossRefGoogle ScholarPubMed
Xu, XJZhang, MMShang, DSWang, QDLuo, BYWeng, XC. Cortical language activation in aphasia: a functional MRI study. Chin Med J 2004;117:1011–106.Google ScholarPubMed
Zaidel, E. Auditory vocabulary of the right hemisphere following brain bisection or hemidecortication. Cortex 1976;12:191211.CrossRefGoogle ScholarPubMed
Gilio, FRizzo, VSiebner, HRRothwell, JC. Effects on the right motor hand-area excitability produced by low-frequency rTMS over human contralateral homologous cortex. J Physiol 2003; 1 ;551 (Pt 2):563–73.CrossRefGoogle ScholarPubMed
Aboitiz, FGarcía, VR. The evolutionary origin of the language areas in the human brain. A neuroanatomical perspective. Brain Res Brain Res Rev 1997;25(3):381 -96 [Review].CrossRefGoogle Scholar
Price, CJCrinion, J. The latest on functional imaging studies of aphasic stroke. Curr Opin Neurol 2005;18(4):429–34.[Review].CrossRefGoogle ScholarPubMed
Winhuisen, LThiel, ASchumacher, BKessler, JRudolf, JHaupt, WFet al.The right inferior frontal gyrus and poststroke aphasia: a followup investigation. Stroke 2007:38(4): 1286–92.CrossRefGoogle Scholar
Mottaghy, FMHungs, MBrtigmann, MSparing, RBoroojerdi, B. Foltys, Het al.Facilitation of picture naming after repetitive transcranial magnetic stimulation. Neurology 1999;53(8): 1806–12.CrossRefGoogle ScholarPubMed