Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T00:38:10.510Z Has data issue: false hasContentIssue false

Análisis de la función prefrontal ventral y dorsal en el trastorno bipolar: estudio de resonancia magnética funcional

Published online by Cambridge University Press:  12 May 2020

Sophia Frangou
Affiliation:
Sección de Neurobiología de la Psicosis, Instituto de Psiquiatría, Kings College, Londres, Londres, Reino Unido.
Justin Kington
Affiliation:
Sección de Neurobiología de la Psicosis, Instituto de Psiquiatría, Kings College, Londres, Londres, Reino Unido.
Vanessa Raymont
Affiliation:
Sección de Neurobiología de la Psicosis, Instituto de Psiquiatría, Kings College, Londres, Londres, Reino Unido.
Sukhwinder S. Shergill
Affiliation:
Sección de Neurobiología de la Psicosis, Instituto de Psiquiatría, Kings College, Londres, Londres, Reino Unido.
Get access

Resumen

Varias líneas de investigación actual sugieren que en el trastorno bipolar (TBP) hay una disfunción de la corteza prefrontal (CPF) dorsal y ventral. Usamos imágenes de resonancia magnética funcional para comparar los patrones de activación cerebral en pacientes derivados a consulta por TBP y en los controles, mientras desempeñaban tareas seleccionadas por su especificidad relativa en la participación de la CPF dorsal (tarea de memoria de trabajo de recuerdo de una serie de n letras a la inversa) o ventral (tarea de juegos de azar). Siete pacientes con TBP fueron seleccionados entre los participantes en el Proyecto del Trastorno Bipolar de Maudsley en función de remisión clínica, ausencia de déficit cognitivos y monoterapia con estabilizadores del estado de ánimo. Individualmente, los sujetos se agruparon por sexo, edad y CI con un número similar de controles sanos. En la tarea de serie inversa de n letras sólo se encontraron diferencias entre los grupos en respuesta al aumento de carga de memoria. Los pacientes no mostraron la respuesta dinámica prevista en la CPF dorsal, sino que tuvieron más activación en las cortezas parietales. Durante la tarea de juegos de azar, los controles exhibieron una activación importante en la CPF ventral y dorsal; ésta se atenuó en pacientes con TBP donde hubo un aumento de la activación de las regiones laterotemporal y lateropolar. Nuestros resultados sugieren que hay anormalidades de rasgo en las funciones de la CPF dorsal y ventral en pacientes con TBP que pueden ser más pronunciadas durante las tareas que se basan en la interacción de la CPF dorso-ventral.

Type
Artículo original
Copyright
Copyright © European Psychiatric Association 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliografía

Baxter, Jr LRSchwartz, JMPhelps, MEMazziotta, JCGuze, BHSelin, CE et al. Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 1989;46:243–50.CrossRefGoogle ScholarPubMed
Bechara, ADamasio, ARDamasio, HAnderson, SW. Insensitivity tofuture consequences following damage to human prefrontal cortex, Cognition 1994;50:715.Google Scholar
Bechara, ADamasio, HTranel, DAnderson, SW. Dissociation of working memory from decisión making within the human prefrontal cortex. J Neurosci 1998;18:428–37.CrossRefGoogle ScholarPubMed
Blumberg, HPStern, ERicketts, SMartínez, Dde Asis, JWhite, T.Rostral and orbital prefrontal cortex dysfunction in the manic State of bipolar disorder. Am J Psychiatry 1999;156:1986–8.Google ScholarPubMed
Blumberg, HPLeung, HCSkudlarski, PLacadle, CMFredericks, CAHarris, BC. A functional magnetic resonance imaging study of bipolar disorder: State- and trait-related dysfunction in ventral prefrontal cortices. Arch Gen Psychiatry 2003;60:601–9.CrossRefGoogle ScholarPubMed
D'Esposito, MAguirre, GKZarahn, EBallard, DShin, RKLease, J.Functional MRI studies of spatial and nonspatial working memory. Cogn Brain Res 1998;7:113.CrossRefGoogle ScholarPubMed
Donaldson, SGoldstein, LHLandau, SRaymont, VFrangou, S. The Maudsley Bipolar Disorder Project: the effect of medication, family history, and duration of illness on IQ and memory in bipolar I disorder. J Clin Psychiatry 2003;64:8693.CrossRefGoogle ScholarPubMed
Elliott, R.Executive functions and theírdisorders. Br Med Bull 2003;65:4959.CrossRefGoogle Scholar
Erust, MBolla, KMouratidis, MContoreggi, CMatochik, JAKurian, V et al. Decision-making in a risk-taking task: a PET study. Neuropsychopharmacology 2002;26:682–91.Google Scholar
Fink, GRMarkowitsch, HJReinkemeier, MBruckbauer, TKessler, JHeiss, WD. Cerebral representation of one's own post: neural networks involved in autobiographical memory. J Neurosci 1996; 16:4275–82.CrossRefGoogle Scholar
Fletcher, PCHenson, RN. Frontal lobes and human memory: insights from functional neuroimaging. Brain 2001; 124(Pt 5):849-81.CrossRefGoogle ScholarPubMed
Frangou, SDonaldson, SHadjulis, MLandau, SGoldstein, LH. The Maudsley Bipolar Disorder Project: executive dysfunction in bipolar disorder I and its clinical correlates. Biol Psychiatry 2005;58:859–64.CrossRefGoogle ScholarPubMed
Fuster, JM.Frontal lobe and cognitive development. J Neurocytol 2002;31:373–85.CrossRefGoogle ScholarPubMed
Haldane, MFrangou, S. New insights help define the pathophysiology of bipolar affective disorder: neuroimaging and neuropathology findings. Prog Neuropsychopharmacol Biol Psychiatry 2004;28: 943–60.CrossRefGoogle ScholarPubMed
Kronhaus, DMLawrence, NSWilliams, AMFrangou, SBrammer, MJWilliams, SC et al. Stroop performance in bipolar disorder: further evidence for abnormalities in the ventral prefrontal cortex. Bipol Disord 2006;8:2839.CrossRefGoogle ScholarPubMed
León, MIShadlen, MN.Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron 1999;24:415–25.CrossRefGoogle ScholarPubMed
Manji, HKMoore, GJChen, G. Bipolar disorder: leads from the molecular and cellular mechanisms of action of mood stabilisers. Br J Psychiatry 2001;178(suppl 41):S107-19.CrossRefGoogle ScholarPubMed
McDermott, KBBuckner, RLPetersen, SEKelley, WMSanders, AL.Set and code-specific activation in the frontal cortex: an fMRI study of encoding and retrieval of faces and words. J Cogn Neurosci 1999;11:631–40CrossRefGoogle ScholarPubMed
Monks, PJThompson, JMBullmore, ETSuckling, JBrammer, MJWilliams, SC et al. A functional MRI study of working memory task in euthymic bipolar disorder: evidence for task-specific dysfunction. Bipolar Disord 2004;6:550-64.CrossRefGoogle ScholarPubMed
Morecraft, RJGeula, CMesulam, MM. Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. J Comp Neurol 1992;323:341–58.CrossRefGoogle ScholarPubMed
Ochsner, KNKnierim, KLudlow, DHHanelin, JRamachandran, TGlover, G et al. Reflecting upon feelings: an fMRI study of neural systems supporting the attribution of emotion to self and other. J Cogn Neurosci 2004;16:1746–72.CrossRefGoogle ScholarPubMed
Owen, AMMcMillan, KMLaird, ARBullmore, E. N-Back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 2005;25:4659.CrossRefGoogle ScholarPubMed
Petrides, MPandya, DN. Association fiber pathways to the frontal cortex from the superior temporal región in the rhesus monkey. J Comp Neurol 1998;273:5266.CrossRefGoogle Scholar
Pochon, JBLevy, RFossati, PLehericy, SPoline, JBPillon, B et al. The neural system that bridges reward and cognition in humans: an fMRI study. Proc Nati Acad Sci USA 2002;99:5669–74.CrossRefGoogle ScholarPubMed
Quraishi, SFrangou, S. Neuropsychology of bipolar disorder: a review. J Affect Disord 2002;72:209–26.CrossRefGoogle ScholarPubMed
Raymont, VBettany, DFrangou, S. The Mandsley bipolar disorder project. Clinical characteristics of bipolar disorder I in a catchment área treatment sample. Eur Psychiatry 2003;18:13–7.CrossRefGoogle Scholar
Reiman, EMLañe, RDAhern, GLSchwartz, GEDavidson, RJFriston, KJ et al. Neuroanatomical correlates of externally and internally generated human emotion. Am J Psychiatry 1997; 154:918-25.Google ScholarPubMed
Rogers, RDOwen, AMMiddleton, HCWilliams, EJPickard, JDSahakian, BJ et al. Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. J Neurosci 1999;19:9029–38.CrossRefGoogle ScholarPubMed
Rolls, ET. The orbitofrontal cortex. Phil Trans R Soc Lond B Biol Sci 1996;351:1433–43.Google ScholarPubMed
Rubinsztein, JSSahakian, BJ. Cognitive impairment in bipolar disorder. Br J Psychiatry 2002; 181:440.CrossRefGoogle ScholarPubMed
Smith, EEJonides, J. Neuroimaging analyses of human working memory. Proc Nati Acad Sci USA 1998;95:12061–8.CrossRefGoogle ScholarPubMed
Smith, EEJonides, J. Storage and executive processes in the frontal lobes. Science 1999;283:1657–61.CrossRefGoogle ScholarPubMed
Talairach, JTournoux, P. A Co-planar Stereotactic Atlas of the Human Brain. New York: Thieme Medical Publishers; 1988.Google Scholar
Wallis, JDMiller, EK. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur J Neurosci 2003;18:2069–81.CrossRefGoogle ScholarPubMed
Watanabe, M. Reward expectancy in primate prefrontal neurons. Nature 1996;382:629–32.CrossRefGoogle ScholarPubMed
Weinberger, DRBerman, KF. Prefrontal function in schizophrenia: confounds and controversies. Phil Trans R Soc Lond B 1996;351: 1495–503.Google ScholarPubMed