Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-15T17:12:01.507Z Has data issue: false hasContentIssue false

¿Síndrome de Munchausen por poderes o “error de la justicia”? Aplicación preliminar de la neuroimagen funcional para diferenciar entre culpabilidad e inocencia

Published online by Cambridge University Press:  12 May 2020

Sean A. Spence
Affiliation:
Psiquiatría Clínica, Universidad de Sheffield, Centro Longley, Norwood Grange Drive, SheffieldS5 7JT, Reino Unido
Catherine J. Kaylor-Hughes
Affiliation:
Psiquiatría Clínica, Universidad de Sheffield, Centro Longley, Norwood Grange Drive, SheffieldS5 7JT, Reino Unido
Martin L. Brook
Affiliation:
Psiquiatría Clínica, Universidad de Sheffield, Centro Longley, Norwood Grange Drive, SheffieldS5 7JT, Reino Unido
Sudheer T. Lankappa
Affiliation:
Psiquiatría Clínica, Universidad de Sheffield, Centro Longley, Norwood Grange Drive, SheffieldS5 7JT, Reino Unido
Iain D. Wilkinson
Affiliation:
Psiquiatría Clínica, Universidad de Sheffield, Centro Longley, Norwood Grange Drive, SheffieldS5 7JT, Reino Unido
Get access

Resumen

El “síndrome de Munchausen por poderes” se refiere, en general, a mujeres acusadas de haber inventado o producido enfermedades en niños bajo su cuidado, destinadas a atraer la atención sobre sí misma. Cuando hay pruebas concluyentes, hay dudas sobre la etiología de la enfermedad, pero cuando no hay pruebas, el diagnóstico depende de la negación de la intencionalidad (conducta también compatible con la inocencia). ¿Cómo podrían los investigadores conseguir pruebas objetivas sobre culpabilidad o inocencia? En este artículo analizamos el caso de una mujer condenada por envenenar a su hija. Cumplió la condena en la cárcel, pero sigue reclamando su inocencia. Usando un protocolo modificado de RMf (publicado ya en 2001) realizamos la prueba de neuroimagen mientras ella confirmaba su versión de los acontecimientos y mientras aceptaba la de sus acusadores. Sugerimos la hipótesis de que los tiempos de respuesta serían más largos y se asociaran con mayor activación de la corteza cingular anterior y prefrontal ventrolateral cuando hacía declaraciones falsas (es decir, cuando “mentía”). La mujer fue sometida 4 veces a RM de 3 teslas. Los resultados revelaron tiempos de respuesta considerablemente más largos y un activación relativamente mayor de la corteza cingular anterior y prefrontal ventrolateral cuando aceptaba la versión de los acontecimientos de sus acusadores. Es decir que aunque no hemos “probado” que esta mujer es inocente, demostramos que sus parámetros conductuales y funcionales anatómicos se comportan como si lo fuera.

Type
Artículo original
Copyright
Copyright © European Psychiatric Association 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliografía

Abe, NSuzuki, MTsukiura, TMori, EYamaguchi, KItoh, Met al.Dissoeiable roles of pretrontal and anterior cingulate cortices in deception. Cerebral Cortex 2006;16:192–9.CrossRefGoogle ScholarPubMed
Asher, R. Munchausen's syndrome. Lancet 1951;1:339–41.CrossRefGoogle ScholarPubMed
Bass, CJones, DPH. Fabricated or induced illness. Psychiatry 2006;5(2):60–5.CrossRefGoogle Scholar
Davatzikos, CRuparel, KFan, YShen, DGAcharyya, MLoughead, JWet al.Classifying spatial patterns of brain activity with machine learning methods: application to lie detection. Neuroimage 2005;28:663–8.CrossRefGoogle ScholarPubMed
A lying matter. Science 2005;310:227. Editorial.Google Scholar
Fingarette, H. Self-deception. 2nd edn. Berkeley: University of California Press; 2000 (originally published 1969).Google Scholar
Friston, KJHolmes, APWorsley, KJPoline, J-BFrith, CDFrackowiak, RSJ. Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping 1995;2:189210.CrossRefGoogle Scholar
Gamer, MBauermann, TStoeter, PVossel, G. Covariations among fMRI, skin conductance and behavioural data during processing of concealed information. Human Brain Mapping 2007 Feb 8 [Epub ahead of print].Google Scholar
Ganis, GKosslyn, SMStose, SThompson, WLYurgelun-Todd, DA. Neural correlates of different types of deception: an fMRI investigation. Cerebral Cortex 2003;13:830–6.CrossRefGoogle ScholarPubMed
Ganser, SJM. A peculiar hysterical State. In: Hirsch, SRShepherd, M, editors. Themes and variations in European psychiatry. Virginia: University Press of Virginia; 1897. p. 6777. 1974, first published 1897.Google Scholar
Hughes, CJFarrow, TFDHopwood, M-CPratt, AHunter, MDSpenee, SA. Reeent developments in deeeption research. Current Psychiatry Reviews 2005;1:271–9.Google Scholar
Kozel, FAJohnson, KAMu, QGrenesko, ELLaken, SJGeorge, MS. Detecting deception using functional magnetic resonance imaging. Biological Psychiatry 2005;58:605–13.CrossRefGoogle ScholarPubMed
Kozel, FAPadgett, TMGeorge, MS. A replication study of the neural correlates of deception. Behavioral Neuroscience 2004; 118:852–6.CrossRefGoogle Scholar
Kozel, FARevell, LJLorberbaum, JPShastri, AElhai, JDHorner, MDet al.A pilot study of functional magnetic resonance imaging brain correlates of deception in healthy young men. The Journal of Neuropsychiatry and Clinical Neurosciences 2004;16:295305.CrossRefGoogle ScholarPubMed
Langleben, DDLoughead, JWBilker, WBRuparel, KChildress, ARBusch, SIet al.Telling truth from lie in individual subjects with fast event-related fMRI. Human Brain Mapping 2005;26:262–72.CrossRefGoogle ScholarPubMed
Langleben, DDSchroeder, LMaldjian, JAGur, RCMcDonald, SRagland, JDet al.Brain activity during simulated deception: an event related functional magnetic resonance study. Neuroimage 2002;15:727–32.CrossRefGoogle ScholarPubMed
Lee, TMCLiu, H-LChan, CCHNg, Y-BFox, PTGao, J-H. Neural correlates of feigned memory impairment. Neuroimage 2005;28:305–13.CrossRefGoogle ScholarPubMed
Lee, TMCLiu, H-LTan, L-HChan, CCHMahankali, SFeng, C-Met al.Lie detection by functional magnetic resonance imaging. Human Brain Mapping 2002; 15.T5764.CrossRefGoogle ScholarPubMed
Meadow, R. Munchausen syndrome by proxy: the hinterland of child abuse. Lancet 1977;2:343–5.CrossRefGoogle ScholarPubMed
Meadow, R. Munchausen syndrome by proxy. Archives of Disease in Childhood 1982;57:92–8.CrossRefGoogle ScholarPubMed
Mele, AR. Real self-deception. The Behavioral and Brain Sciences 1997;20:91136.CrossRefGoogle ScholarPubMed
Nelson, HEO’Counell, A. Dementia: the estimation of pre-morbid intelligence levels using the national adult reading test. Cortex 1978; 14: 234–44.CrossRefGoogle Scholar
Nunez, JMCasey, BJEgner, THare, THirsch, J. Intentional false responding shares neural substrates with response conflict and cognitive control. Neuroimage 2005;25:267–77.CrossRefGoogle ScholarPubMed
Pankratz, L. Persistent problems with the Munchausen syndrome by proxy Iabel. The Journal of the American Academy of Psychiatry and the Law 2006;34:90–5.Google Scholar
Pearson, H. Lure of lie detectors spooks ethicists. Nature 2006;441:918–9.Google Scholar
Phan, KLMagalhaes, AZiemlewicz, TJFitzgerald, DAGreen, CSmith, W. Neural correlates of telling lies: a functional magnetic resonance imaging study at 4 Tesla. Academic Radiology 2005;12:164–72.CrossRefGoogle ScholarPubMed
Rogers, R. Diagnostic, explanatory, and detection models of Munehausen by proxy: extrapolation from malingering and deeeption. Child Abuse & Neglect 2004;28:225–39.CrossRefGoogle Scholar
Sanoo, M. Abductor sign: a reliable new sign to detect unilateral nonorganic paresis of the lower limb. Journal of Neurology, Neurosurgery and Psychiatry 2004;75:121–5.Google Scholar
Spence, SA. Hysterical paralyses as disorders of action. Cognitive Neuropsychiatry 1999;4:203–26.CrossRefGoogle ScholarPubMed
Spence, SA. The deceptive brain. Journal of the Royal Society of Medicine 2004;97:69.Google ScholarPubMed
Spence, SA. Playing devil's advocate: the case against fMRI lie detection. Legal and Criminological Psychology, in press.Google Scholar
Spence, SAFarrow, TFDHerford, AEWilkinson, IDZheng, YWoodruff, PW. Behavioural and functional anatómica] correlates of deception in humans. Neuroreport 2001;12:2849–53.CrossRefGoogle Scholar
Spence, SFarrow, TLeung, DShah, SReilly, BRahman, Aet al.Lying as an executive function. In: Halligan, PWBass, COakley, DA, editors. Malingering and illness deception. Oxford: Oxford University Press; 2003. p. 255–66.Google Scholar
Spence, SAHunter, MDFarrow, TFDGreen, RDLeung, DHHughes, CJet al.A cognitive neurobiological account of deception: evidence from functional neuroimaging. Philosophical Transactions of the Royal Society of London, Series B 2005;359:1755–62.Google Scholar
Talairach, PTournoux, JA. A stereotactic co-planar atlas of the human brain. Stuttgart: Thieme; 1988.Google Scholar
Trivers, R. The elements of a scientific theory of self-deception. Annals of the New York Academy of Sciences 2000;907:114–31.CrossRefGoogle ScholarPubMed
Vrij, A. Detecting lies and deceit: the psychology of lying and the implications for professional practice. Chichester: Wiley; 2000.Google Scholar