Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T18:35:06.677Z Has data issue: false hasContentIssue false

Neolithic diet at the Brochtorff Circle, Malta

Published online by Cambridge University Press:  25 January 2017

M.P. Richards*
Affiliation:
University of Bradford, UK
R.E.M. Hedges
Affiliation:
Radiocarbon Accelerator Unit, University of Oxford, UK
I. Walton
Affiliation:
Radiocarbon Accelerator Unit, University of Oxford, UK
S. Stoddart
Affiliation:
Magdalene College, Cambridge, UK
C. Malone
Affiliation:
The British Museum, London, UK
*

Abstract

From Neolithic Malta, there is evidence of increasing population size accompanied by increasingly elaborate material culture, including the famous megalithic architecture. Stoddart et al. (1993) argued that social tensions and controls increased as food resources diminished. One important requirement of this argument is that the Neolithic inhabitants of Malta depended entirely on domesticated plants and animals for subsistence and therefore, with increased population sizes, the poor agricultural potential of these islands was stretched. However, it is possible that the consumption of wild foods, particularly marine resources, in the Neolithic would make up any shortfall in the agricultural foods. A direct way of measuring the amounts of marine protein in human diets is through chemical analysis of human bone. Stable isotope analyses undertaken on seven Accelerator Mass Spectrometer (AMS) radiocarbon dated humans from the Neolithic at the Brochtorff Circle indicated that there is no evidence for the significant use of marine foods by these Neolithic individuals. These new data indicate that agricultural foods were the dietary staple for this sample of the Maltese Neolithic population and therefore support the argument that increasing population during the Neolithic could have resulted in increasing resource stress.

En Malte néolithique, une population croissante allait de pair avec une culture matérielle de plus en plus élaborée, incluant la fameuse architecture mégalithique. Stoddart et al. (1993) affirment que les tensions sociales et l'application d'autorité augmentaient en même temps que les ressources alimentaires diminuaient. Une condition importante de cet argument est que la subsistance des habitants néolithiques de Malte dépendait entièrement de plantes et d'animaux domestiqués et que, pour cette raison, le potentiel agricole insuffisant de ces îles avait été poussé jusqu'au point de rupture. Pourtant, il semble possible que ce manque pouvait être compensé par la consommation de nourriture sauvage, surtout maritime. Il existe un moyen de mesurer les quantités de protéines maritimes dans la nourriture humaine en analysant chimiquement les os humains. Des analyses du dosage d'isotopes stables de sept squelettes humains datés par radiocarbon AMS, provenant du cercle de Brochtorff, n'indiquaient pas de consommation significative de nourriture maritime. Ces nouvelles données nous montrent que le régime principal de cet échantillon d'individus néolithiques consistait en nourriture d'origine agricole et soutiennent de cette manière que la population croissante du néolithique pouvait conduire vers une grave pénurie de ressources.

Zusammenfassung

Zusammenfassung

Es gibt für das neolithische Malta Hinweise auf ein Bevölkerungswachstum, das mit einer zunehmend kunstvoll ausgearbeiteten materiellen Kultur und auch der bekannten megalithischen Architektur einherging. Stoddart et al. (1993) legten dar, daß soziale Spannungen und Kontrollen zunahmen, als sich die Nahrungsgrundlagen verringerten. Eine wichtige Bedingung dieses Argumentes ist, daß domestizierte Pflanzen und Tiere die ausschließlichen Lebensgrundlagen der neolithischen Bevölkerung Maltas bildeten und daher das dürftige landwirtschaftliche Potential dieser Inseln bei ansteigender Bevölkerungsanzahl bis zum Zusammenbruch ausgeschöpft wurde. Jedoch ist es auch möglich, daß der Konsum von Wildformen, besonders der maritimen Ressourcen, eine Verminderung landwirtschaftlicher Nahrung ausgelöst haben kann. Ein direkter Weg, die Menge maritimen Proteins in menschlicher Nahrung zu ermitteln, ist die chemische Untersuchung menschlichen Knochenmaterials. Die Untersuchung stabiler Isotopen an sieben AMS radiocarbondatierten neolithischen Individuen vom Brochtorff Circle zeigte, daß bei ihnen keine Beweise einer signifikanten Nutzung maritimer Nahrung festgestellt werden konnten. Diese neuen Informationen belegen, daß landwirtschaftlich gewonnene Lebensmittel die hauptsächliche Nahrungsgrundlage dieses Ausschnittes aus der neolithischen Population Maltas bildeten. Sie stützen damit das Argument, daß eine anwachsende Bevölkerung während des Neolithikums eine steigende Ressourcen-Knappheit ausgelöst haben könnte.

Type
Articles
Copyright
Copyright © 2001 Sage Publications 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrose, S.H., 1993. Isotopic analysis of paleodiets: methodological and interpretive considerations. In Sandford, M.K. (ed.), Investigations of Ancient Human Tissue: Chemical Analyses in Anthropology: 59130. Langhorne, PA: Gordon and Breach Science Publishers.Google Scholar
Bernabò Brea, L., 1960. Malta and the Mediterranean. Antiquity 34:132137.CrossRefGoogle Scholar
Bocherens, H., Billiou, D., Mariotti, A., Patou-Mathias, M., Otte, M., Bonjean, D. and Toussaint, M., 1999. Palaeoenvironmental and palaeodietary implications of isotopic biogeochemistry of last interglacial Neanderthal and mammal bones in Sdadina Cave (Belgium). Journal of Archaeological Science 26:599607.CrossRefGoogle Scholar
Bonanno, A., Goulder, T., Malone, C., and Stoddart, S., 1990. Monuments in an island society: the Maltese context. World Archaeology 22(2):190205.CrossRefGoogle Scholar
Duhig, C., 1995. Skeletal material from the Zebugg tomb. In Malone, C., Stoddart, S., Bonanno, A., Gouder, T., and Trump, D. (eds) Proceedings of the Prehistoric Society 61:335341.Google Scholar
Fergusson, J., 1872. Rude Stone Monuments in all Countries: Their Age and Uses. London: John Murray.Google Scholar
Fizet, M., Mariotti, A., Bocherens, H., Lange-Badré, B., Vandersmeersch, B., Borel, J. and Bellon, G., 1995. Effect of diet, physiology and climate on carbon and nitrogen stable isotopes of collagen in late Pleistocence anthropic palaeoecosystem: Marillac, Charente, France. Journal of Archaeological Science. 22:6779.CrossRefGoogle Scholar
Hayden, C., 1998. Interaction and development: the late Neolithic and Copper Age archaeology of western Mediterranean islands. Unpublished PhD dissertation: University of Cambridge.Google Scholar
Katzenberg, M.A. and Weber, A., 1999. Stable isotope ecology and palaeodiet in the Lake Baikal Region of Siberia. Journal of Archaeological Science 26:651659.CrossRefGoogle Scholar
Lillie, M. and Richards, M.P., 2000. New radiocarbon dates and palaeodietary evidence from the Ukrainian Mesolithic. Journal of Archaeological Science 27:965972.CrossRefGoogle Scholar
Lubell, D., Jackes, M., Schwarcz, H., Knyf, M. and Meiklejohn, C., 1994. The Mesolithic-Neolithic transition in Portugal: isotopic and dental evidence of diet. Journal of Archaeological Science 21:201216.CrossRefGoogle Scholar
Malone, C., 1997–1998. Processes of colonisation in the central Mediterranean. Accordia Research Papers 7:3757.Google Scholar
Malone, C. and Stoddart, S., 1998. The conditions of creativity for prehistoric Maltese art. In Mithen, S. (ed.), The Prehistory of Creative Thought: 241259. London: Routledge.Google Scholar
Malone, C., Stoddart, S., Bonanno, A., Gouder, T. and Trump, D., 1995. Mortuary ritual of 4th millennium BC Malta: the Zebugg period chambered tomb from the Brochtorff Circle at Xaghra (Gozo). Proceedings of the Prehistoric Society 61:303345.CrossRefGoogle Scholar
Mezzena, F., 1998. Le stele antropomorfe in Europa. In Mezzena, F. and Zidda, G. (eds), Dei di Pietra. La grande statuaria antropomorfa nell'Europa del III millennio a.C: 1489. Milano: Sidra.Google Scholar
Richards, M.P. and Hedges, R.E.M., 1999a. Stable isotope evidence for similarities in the types of marine foods used by late Mesolithic humans at sites along the Atlantic coast of Europe. Journal of Archaeological Science 26:717722.CrossRefGoogle Scholar
Richards, M.P. and Hedges, R.E.M., 1999b. A Neolithic revolution? New evidence of diet in the British Neolithic. Antiquity 73:891897.CrossRefGoogle Scholar
Richards, M.P. and Mellars, P., 1998. Stable isotopes and the seasonality of the Oronsay middens. Antiquity 72(275):178184.CrossRefGoogle Scholar
Richards, M.P., Molleson, T.I., Vogel, J.C. and Hedges, R.E.M., 1998. Stable isotope analysis reveals variations in human diet at the Poundbury Camp cemetery site. Journal of Archaeological Science 25:12471252.CrossRefGoogle Scholar
Richards, M.P., Jacobi, R., Currant, A., Stringer, C. and Hedges, R.E.M., 2000. Gough's Cave and Sun Hole Cave human stable isotope values indicate a high animal protein diet in the British upper Palaeolithic. Journal of Archaeological Science 27:13.CrossRefGoogle Scholar
Richards, M.P., Pettitt, P.B., Trinkaus, E., Smith, F.H., Karavanić, I. and Paunović, M., 2000. Neanderthal diet at Vindija and Neanderthal predation: the evidence from stable isotopes. The Proceedings of the National Academy of Sciences, USA 97:76637666.CrossRefGoogle ScholarPubMed
Robb, J., 2001. Island identities: ritual, travel and the creation of difference in Neolithic Malta. European Journal of Archaeology 4(2):173200.Google Scholar
Schutkowski, H., Herrmann, B., Wiedemann, F., Bocherens, H. and Grupe, G., 1999. Diet, status and decomposition: trace element and isotope analyses on early medieval skeletal material. Journal of Archaeological Science 26:675685.CrossRefGoogle Scholar
Schwarcz, H. and Schoeninger, M., 1991. Stable isotope analyses in human nutritional ecology. Yearbook of Physical Anthropology 34:283321.CrossRefGoogle Scholar
Stoddart, S., 1999. Long term dynamics of an island community: Malta 5500 BC–AD 2000. In Tykot, R. (ed.), Social Dynamics in the Central Mediterranean: 137147. Sheffield: Sheffield Academic Press.Google Scholar
Stoddart, S. and Malone, C., 1995. Radiocarbon dates. In Malone, C., Stoddart, S., Bonanno, A., Gouder, T. and Trump, D. (eds), Proceedings of the Prehistoric Society 61:342.Google Scholar
Stoddart, S., Bonanno, A., Gouder, T., Malone, C. and Trump, D., 1993. Cult in an island society: prehistoric Malta in the Tarxien period. Cambridge Archaeological Journal. 3(1):319.CrossRefGoogle Scholar
Tauber, H., 1981. Thirteenth-century evidence for dietary habits of prehistoric man in Denmark. Nature 292:332333.CrossRefGoogle Scholar
Ugolini, L.M., 1934. Malta. Origini della civiltà meditemanea. Roma: La Libreria dello Stafoa.Google Scholar
Zammit, T. 1930. Prehistoric Malta, the Tarxien Temples. Oxford: Oxford University Press.Google Scholar