Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T21:03:06.793Z Has data issue: false hasContentIssue false

‘Impious Easterners': Can Oxygen and Strontium Isotopes Serve as Indicators of Provenance in Early Medieval European Cemetery Populations?

Published online by Cambridge University Press:  25 January 2017

Rhea Brettell
Affiliation:
Division of Archaeological, Geographical and Environmental Sciences, University of Bradford, UK
Jane Evans
Affiliation:
NERC Isotope Geosciences Laboratory, Keyworth, Nottingham, UK
Sonja Marzinzik
Affiliation:
Department of Prehistory and Europe, British Museum, London, UK
Angela Lamb
Affiliation:
NERC Isotope Geosciences Laboratory, Keyworth, Nottingham, UK
Janet Montgomery
Affiliation:
Department of Archaeology, University of Durham, UK

Abstract

Considerable debate persists concerning the origins of those involved in the adventus Saxonum: the arrival of Germanic peoples in Britain during the fifth century AD. This question was investigated using oxygen and strontium isotope ratios obtained from archaeological dental samples from individuals in the ‘Migration Period’ cemetery, Ringlemere, Kent (n = 7) and three continental European sites (n = 17). Results demonstrated that strontium alone is unable to distinguish between individuals from south-east England and north-west Europe. Although 87Sr/86Sr values from Ringlemere fell within local biosphere parameters and suggest a spatially and temporally related group, δ18O values were inconsistent with origins in eastern England or on the North German plain. Results from the European sites negate past climate change as an explanation. It is possible that culturally mediated behaviour has obscured geographical relationships. Further work to characterize water sources and human δ18O values in the putative European homelands is required.

Les origines des participants de l'Adventus Saxonum – l'arrivée de peuplades germaniques en Grande-Bretagne durant le 5e siècle AD – suscitent toujours de vifs débats. On étudie cette question en utilisant des proportions d'isotopes du strontium et de l'oxygène obtenues à partir d'échantillons dentaires archéologiques d'individus du cimetière de la ‘période migratoire’ de Ringlemere, Kent (n = 7) et de trois sites continentaux européens (n = 17). Les résultats montrent que le strontium à lui seul ne permet pas de distinguer entre les individus du sud-est de l'Angleterre et du nord-ouest de l'Europe. Bien que les valeurs 87Sr/86Sr s'inscrivent dans les paramètres biosphériques locaux et semblent indiquer un groupe relié dans le temps et dans l'espace, les valeurs δ18O sont en contradiction avec des origines en Angleterre de l'est ou dans la plaine de l'Allemagne du nord. Les résultats des sites européens excluent des anciens changements climatiques comme explication. Les relations géographiques ont possiblement été obscurcies par un comportement influencé par la médiation culturelle. Il est nécessaire de caractériser les sources aquatiques et les valeurs de δ18O humain dans les supposées patries européennes. Translation by Isabelle Gerges..

Zusammenfassung

Zusammenfassung

Noch immer existiert eine umfangreiche Diskussion zur Herkunft derer, die am adventus Saxonum, der Ankunft von Germanen in Britannien während des 5. Jhs. AD, beteiligt war. Die Frage wurde anhand von Sauerstoff- und Strontiumwerten aus archäologischen Zahnproben von Individuen des ‘völkerwanderungszeitlichen‘ Friedhofes von Ringlemere, Kent, (n = 7) und drei kontinentaleuropäischen Fundplätzen (n = 17) untersucht. Die Ergebnisse zeigten, dass es nicht möglich ist, allein durch Strontium zwischen Individuen aus Südostengland und Nordwesteuropa zu unterscheiden. Obwohl die 87Sr/86Sr-Werte aus Ringlemere innerhalb der lokalen Biosphärenparameter liegen und eine räumlich und zeitlich verbundene Gruppe vermuten lassen, stimmen die δ18O-Werte mit einer Herkunft aus Ostengland oder auch aus dem Norddeutschen Tiefland nicht überein. Ergebnisse der europäischen Fundplätze sprechen gegen eine frühere klimatische Änderung als Erklärung. Es ist möglich, dass kulturell vermitteltes Verhalten geographische Verbindungen verschleiert hat. Dies macht zukünftige Studien notwendig, um Wasserquellen und δ18O-Werte in den mutmaßlichen europäischen Herkunftsgebieten zu charakterisieren. Translation by Heiner Schwarzburg..

Type
Articles
Copyright
Copyright © European Association of Archaeologists 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åberg, G. 1995. The Use of Natural Strontium Isotopes as Tracers in Environmental Studies. Water, Air and Soil Pollution, 79: 309–22.CrossRefGoogle Scholar
Adams, W.Y., van Gerven, D.P. & Levy, R.S. 1978. The Retreat from Migrationism. Annual Review of Anthropology, 7: 483532.CrossRefGoogle Scholar
Adamson, M.W. 2004. Food in Medieval Times. Westport, Connecticut: Greenwood Press.CrossRefGoogle Scholar
Ager, D.V. 1980. The Geology of Europe. London: McGraw-Hill.Google Scholar
Anthony, D. 1990. Migration in Archaeology: The Baby and the Bathwater. American Anthropologist, 92: 895914.CrossRefGoogle Scholar
Anthony, D., 1997. Prehistoric Migration as Social Process. In: Chapman, J. & Hamerow, H., eds. Migrations and Invasions in Archaeological Explanation. Oxford: British Archaeological Publications (International Series 664), pp. 2132.Google Scholar
Avery, B.W. 1990. Soils of the British Isles. Wallingford: C.A.B. International.Google Scholar
Beard, B.L. & Johnson, C.M. 2000. Strontium Isotope Composition of Skeletal Material can Determine the Birth Place and Geographic Mobility of Humans and Animals. Journal of Forensic Science, 45: 1049–61.CrossRefGoogle ScholarPubMed
Bede, , 1990. Ecclesiastical History of the English People, trans. by Sherley-Price, L., revised ed. by Latham, R.E. London: Penguin.Google Scholar
Bentley, R.A. 2006. Strontium Isotopes from the Earth to the Archaeological Skeleton: A Review. Journal of Archaeological Method and Theory, 13: 135–87.Google Scholar
Brettell, R.C. 2008. ‘Impious Easterners’: Oxygen and Strontium Isotopes as Indicators of Provenance in Early Mediaeval Cemetery Populations (unpublished MSc dissertation, University of Bradford, UK).Google Scholar
Brettell, R., Montgomery, J. & Evans, J. 2012. Brewing and Stewing: the Effect of Culturally Mediated Behaviour on the Oxygen Isotope Composition of Ingested Fluids and Implications for Human Provenance Studies. Journal of Analytical Atomic Spectrometry. DOI: 10.1039/C2JA10335DCrossRefGoogle Scholar
British Geological Survey. 1977. Dover. Sheet 290: Solid and Drift Edition. 1:50,000 Series. Nottingham: NERC.Google Scholar
Brooks, N. 1989. The Creation and Early Structure of the Kingdom of Kent. In: Bassett, S., ed. The Origins of Anglo-Saxon Kingdoms. London & New York: Leicester University Press, pp. 5574.Google Scholar
Budd, P., Montgomery, J., Evans, J. & Chenery, C. 2001. Combined Pb-, Sr- and O-Isotope Analysis of Human Dental Tissue for the Reconstruction of Archaeological Residential Mobility. In: Holland, J.G. & Tanner, S.D., eds. Plasma Source Mass Spectrometry: The New Millennium. Cambridge: Royal Society of Chemistry, pp. 311–23.Google Scholar
Burmeister, S. 2000. Archaeology and Migration: Approaches to an Archaeological Proof of Migration. Current Anthropology, 41: 539–67.CrossRefGoogle Scholar
Catt, J.A., Bateman, R.M., Wintle, A.G. & Murphy, C.P. 1987. The ‘Loess’ Section at Borden, Kent, SE England. Journal of Quaternary Science, 2: 141–47.CrossRefGoogle Scholar
Chapman, J. & Hamerow, H. 1997. Introduction: On the Move Again: Migrations and Invasions in Archaeological Explanation. In: Chapman, J. & Hamerow, H., eds. Migrations and Invasions in Archaeological Explanation. Oxford: British Archaeological Publications (International Series 664), pp. 110.CrossRefGoogle Scholar
Chenery, C.A., Müldner, G., Evans, J., Eckardt, H. & Lewis, M. 2010. Strontium and Stable Isotope Evidence for Diet and Mobility in Roman Gloucester, UK. Journal of Archaeological Science, 37: 150–63.CrossRefGoogle Scholar
Cornell, S. & Hartmann, D. 1998. Ethnicity and Race: Making Identities in a Changing World. Thousand Oaks, CA: Pine Forge Press.Google Scholar
Crawford, S. 1997. Britons, Anglo-Saxons and the Germanic Burial Ritual. In: Chapman, J. & Hamerow, H., eds. Migrations and Invasions in Archaeological Explanation. Oxford: British Archaeological Publications (International Series 664), pp. 4572.Google Scholar
Dansgaard, W. 1964. Stable Isotopes in Precipitation. Tellus, 4: 436–68.Google Scholar
Darling, W.G. 2004. Hydrological Factors in the Interpretation of Stable Isotopic Proxy Data Present and Past: A European Perspective. Quaternary Science Reviews, 23: 743–70.CrossRefGoogle Scholar
Darling, W.G. & Talbot, J.C. 2003. The O & H Stable Isotopic Composition of Fresh Waters in the British Isles. 1. Rainfall. Hydrology and Earth System Sciences, 7: 163–81.Google Scholar
Darling, W.G., Bath, A.H. & Talbot, J.C. 2003. The O & H Stable Isotopic Composition of Fresh Waters in the British Isles. 2. Surface Waters and Groundwater. Hydrology and Earth System Sciences, 7: 183–95.Google Scholar
Daux, V., Lécuyer, C., Adam, F., Martineau, F. & Vimeux, F. 2005. Oxygen Isotope Compositions of Human Teeth and the Record of Climate Changes in France (Lorraine) during the Last 1700 Years. Climate Change, 70: 445–64.Google Scholar
Daux, V., Lécuyer, C., Héran, M.-A., Amiot, R., Simon, L., Fourel, F., Martineau, F., Lynnerup, N., Reychler, H. & Escarguel, G. 2008. Oxygen Isotope Fractionation between Human Phosphate and Water Revisited. Journal of Human Evolution, 55: 1138–47.CrossRefGoogle ScholarPubMed
Diefendorf, A.F. & Patterson, W.P. 2005. Survey of Stable Isotope Values in Irish Surface Waters. Journal of Paleolimnology, 34: 257–69.CrossRefGoogle Scholar
Effros, B. 2003. Merovingian Mortuary Archaeology and the Making of the Early Middle Ages. Berkeley & Los Angeles: University of California Press.Google Scholar
Ehleringer, J.R., Bowen, G.J., Chesson, L.A., West, A.G., Podlesak, D.W. & Cerling, T.E. 2008. Hydrogen and Oxygen Isotope Ratios in Human Hair are Related to Geography. Proceedings of the National Academy of Sciences, 105: 2788–93.CrossRefGoogle ScholarPubMed
Embleton, C. 1984. Geomorphology of Europe. London: Macmillan.CrossRefGoogle Scholar
Ericson, J.E. 1985. Strontium Isotope Characterization in the Study of Prehistoric Human Ecology. Journal of Human Evolution, 14: 503–14.CrossRefGoogle Scholar
Evans, J., Stoodley, N. & Chenery, C. 2006. A Strontium and Oxygen Isotope Assessment of a Possible Fourth Century Immigrant Population in a Hampshire Cemetery, Southern England. Journal of Archaeological Science, 33: 265–72.CrossRefGoogle Scholar
Evans, J.A. & Tatham, S. 2004. Defining Local Signature’ in Terms of Sr Isotope Composition Using a Tenth to Twelfth-Century Anglo-Saxon Population Living on a Jurassic Clay-Carbonate Terrain, Rutland, UK. In: Pye, K. & Croft, D.J., eds. Forensic Geoscience: Principles, Techniques and Applications. Special Publications 232. London: Geological Society of London, pp. 237–48.Google Scholar
Evans, J.A., Montgomery, J. & Wildman, G. 2009. Isotope Domain Mapping of Sr87 / Sr86 Biosphere Variation on the Isle of Skye, Scotland. Journal of the Geological Society, 166: 617–31.CrossRefGoogle Scholar
Evans, J.A., Montgomery, J., Wildman, G. & Boulton, N. 2010. Spatial Variations in Biosphere 87Sr/86Sr in Britain. Journal of the Geological Society, London, 167: 14.CrossRefGoogle Scholar
Evison, V.I. 1987. Dover: The Buckland Anglo-Saxon Cemetery. English Heritage Archaeological Report 3. London: English Heritage.Google Scholar
Faure, G. 1986. Principles of Isotope Geology, 2nd ed. New York: Wiley.Google Scholar
Förstel, H. & Hützen, H. 1983. Oxygen isotope ratios in German groundwater. Nature, 304: 614–16.CrossRefGoogle Scholar
Frei, K.M. & Frei, R. 2011. The Geographic Distribution of Strontium Isotopes in Danish Surface Waters: A Base for Provenance Studies in Archaeology, Hydrology and Agriculture. Applied Geochemistry, 26: 326–40.CrossRefGoogle Scholar
Fricke, H.C. & O'Neil, J.R. 1996. Inter- and Intra-Tooth Variation in the Oxygen Isotope Composition of Mammalian Tooth Enamel Phosphate: Implications for Palaeoclimatological and Palaeobiological Research. Palaeogeography, Palaeoclimatology, Palaeoecology, 126: 9199.CrossRefGoogle Scholar
Fricke, H.C., O'Neil, J.R. & Lynnerup, N. 1995. Oxygen Isotope Composition of Human Tooth Enamel from Medieval Greenland: Linking Climate and Society. Geology, 23: 869–72.2.3.CO;2>CrossRefGoogle Scholar
Gallet, S., Jahn, B.M., Lanoe, B.V., Dia, A. & Rossello, E. 1998. Loess geochemistry and its Implications for Particle Origin and Composition of the Upper Continental Crust. Earth and Planetary Science Letters, 156: 157–72.CrossRefGoogle Scholar
Geary, P.J. 2002. The Myth of Nations: The Medieval Origins of Europe. Princeton & Oxford: Princeton University Press.Google Scholar
Gildas, , 1978. The Ruin of Britain and Other Works, trans. & ed. by Winterbottom, M. Chichester: Phillimore.Google Scholar
Goudie, A.S. & Brunsden, D. 1994. The Environment of the British Isles: An Atlas. Oxford: Clarendon Press.Google Scholar
Hagen, A. 1995. A Second Handbook of Anglo-Saxon Food and Drink: Production and Distribution. Hockwold cum Wilton, Norfolk: Anglo-Saxon Books.Google Scholar
Hagen, A. 2006. Anglo-Saxon Food and Drink: Production, Processing, Distribution and Consumption. Hockwold cum Wilton, Norfolk: Anglo-Saxon Books.Google Scholar
Hamerow, H. 1994. Migration Theory and the Migration Period. In: Vyner, B., ed. Building on the Past. London: Royal Archaeological Institute, pp. 164–77.Google Scholar
Härke, H. 1990. Warrior graves'? The Background of the Anglo-Saxon Weapon Burial Rite. Past and Present, 126: 2243.CrossRefGoogle Scholar
Härke, H. 1998. Archaeologists and Migrations: A Problem of Attitude? Current Anthropology, 39: 1945.CrossRefGoogle Scholar
Härke, H. 2007. Ethnicity, ‘Race’ and Migration in Mortuary Archaeology: An Attempt at a Short Answer. Anglo-Saxon Studies in Archaeology and History, 14: 1218.CrossRefGoogle Scholar
Hass, H.C. 1996. Northern Europe Climate Variations during Late Holocene: Evidence from Marine Skagerrak. Palaeogeography, Palaeoclimatology, Palaeoecology, 123: 121–45.CrossRefGoogle Scholar
Hawkes, C.F.C. 1956. The Jutes in Kent. In: Harden, D.B., ed. Dark-Age Britain: Studies Presented to E.T. Leeds. London: Methuen, pp. 91111.Google Scholar
Hawkes, S.C. 1982. Anglo-Saxon Kent c. 425-725. In: Leach, P.E., ed. Archaeology in Kent to AD 1500. Council for British Archaeology Research Report 48. London: Council for British Archaeology, pp. 6478.Google Scholar
Heather, P. 2009. Empires and Barbarians: Migration, Development and the Birth of Europe. London: Macmillan.Google Scholar
Hedeager, L. 1992. Kingdoms, Ethnicity and Material Culture: Denmark in a European Perspective. In: Carver, M.O. H., ed. The Age of Sutton Hoo: The Seventh Century in North-Western Europe. Woodbridge, Suffolk: The Boydell Press, pp. 279300.Google Scholar
Hedeager, L. 2000. Migration Period Europe: The Formation of a Political Mentality. In: Thews, F. & Nelson, J., eds. Rituals of Power from Late Antiquity to the Early Middle Ages. Leiden: E.J. Brill, pp. 1557.CrossRefGoogle Scholar
Higham, N. 1992. Rome, Britain and the Anglo-Saxons. London: Seaby.Google Scholar
Hills, C. 2003. Origins of the English. London: Duckworth & Co.Google Scholar
Hornsey, I.S. 2003. A History of Beer and Brewing. The Royal Society of Chemistry: Cambridge.Google Scholar
Huertas, A.D., Iacumin, P., Stenni, B., Chillón, B.S. & Longinelli, A. 1995. Oxygen Isotope Variations of Phosphate in Mammalian Bone and Tooth Enamel. Geochimica et Cosmochimica Acta, 59: 4299–305.Google Scholar
Hummer, H.J. 1998. Franks and Alamanni: A Discontinuous Ethnogenesis. In: Wood, I., ed. Franks and Alamanni in the Merovingian Period: an Ethnographic Perspective. Woodbridge, Suffolk: The Boydell Press, pp. 932.Google Scholar
IAEA [International Atomic Energy Agency]. 2008. Water isotope system for data analysis, visualisation and electronic retrieval [online]. Available at: <http://nds121.iaea.org/wiser>..>Google Scholar
James, E. 1980. Merovingian Cemetery Studies and Some Implications for Anglo-Saxon England. In: Rahtz, P., Dickinson, T. & Watts, W., eds. Anglo-Saxon Cemeteries 1979: The Fourth Anglo-Saxon Symposium at Oxford. Oxford: British Archaeological Publications (British Series 82), pp. 3555.Google Scholar
James, E. 1991. The Franks, paperback ed. Oxford: Blackwell.Google Scholar
Jørgensen, N.O., Morthorst, J. & Holm, P.M. 1999. Strontium-Isotope Studies of ‘Brown water’ (Organic-Rich Groundwater) from Denmark. Hydrogeology Journal, 7: 533–39.CrossRefGoogle Scholar
Kloppmann, W., Négrel, P., Casanova, J., Klinge, H., Schelkes, K. & Guerrot, C. 2001. Halite Dissolution Derived Brines in the Vicinity of a Permain Salt Dome (N. German Basin). Evidence from Boron, Strontium, Oxygen, and Hydrogen Isotopes. Geochimica et Cosmochimica Acta, 65: 4087–101.CrossRefGoogle Scholar
Kruse, P. 2007. Jutes in Kent? On the Nature of Jutish Kent, Southern Hampshire and the Isle of Wight. Probleme der Küstenforschung im südlichen Nordseegebiet, 31: 243376.Google Scholar
Lécolle, P. 1985. The Oxygen Isotope Composition of Landsnail Shells as a Climatic Indicator: Applications to Hydrogeology and Paleoclimatology. Chemical Geology, 58: 157–81.CrossRefGoogle Scholar
Lee-Thorp, J.A. 2002. Two Decades of Progress towards Understanding Fossilization Processes and Isotopic Signals in Calcified Tissue Minerals. Archaeometry, 44: 435–46.CrossRefGoogle Scholar
Lee-Thorp, J.A. & Sponheimer, M. 2003. Three Case Studies Used to Reassess the Reliability of Fossil Bone and Enamel Isotope Signals for Palaeodietary Studies. Journal of Anthropological Archaeology, 22: 208–16.CrossRefGoogle Scholar
Lethbridge, T.C. 1956. The Anglo-Saxon Settlement in Eastern England. In: Harden, D. B., ed. Dark-Age Britain: Studies Presented to E.T. Leeds. London: Methuen, pp. 112–22.Google Scholar
Levinson, A.A., Luz, B. & Kolodny, Y. 1987. Variations in Oxygen Isotopic Compositions of Human Teeth and Urinary Stones. Applied Geochemistry, 2: 367–71.CrossRefGoogle Scholar
Longinelli, A. 1984. Oxygen isotopes in Mammal Bone Phosphate: A New tool for Paleohydrological and Paleoclimatological Research? Geochimica et Cosmochimica Acta, 48: 385–90.CrossRefGoogle Scholar
Longinelli, A. & Selmo, E. 2003. Isotopic Composition of Precipitation in Italy: A First Overall Map. Journal of Hydrology, 270: 7588.Google Scholar
Lucy, S. 1998. The Early Anglo-Saxon Cemeteries of East Yorkshire: An Analysis and Reinterpretation. Oxford: British Archaeological Publications (British Series 272).CrossRefGoogle Scholar
Lucy, S. 2000. The Anglo-Saxon Way of Death. Stroud: Sutton.Google Scholar
Luz, B., Kolodny, Y. & Horowitz, M. 1984. Fractionation of Oxygen Isotopes between Mammalian Bone-Phosphate and Environmental Drinking Water. Geochimica et Cosmochimica Acta, 48: 1689–93.CrossRefGoogle Scholar
Mackney, D., Hodgson, J.M., Hollis, J.M. & Staines, S.J. eds. 1983. Legend for the 1:250,000 Soil Map of England and Wales: Soils of England and Wales, Sheet 6. Harpenden: Soil Survey of England and Wales.Google Scholar
Marzinzik, S. 2006. Early Cross-Channel Contacts Revisited: The Anglo-Saxon Cemetery at Ringlemere Farm, East Kent. Association Française d'Archéologie Merovingienne, Bulletin de Liaison, 30: 5758.Google Scholar
Marzinzik, S. 2011. The Earliest Anglo-Saxons? The Burial Site at Ringlemere Farm, East Kent, and Early Cross-Channel Migration. In: Brookes, S., Harrington, S. & Reynolds, A., eds. Studies in Early Anglo-Saxon Art and Archaeology: Papers in Honour of Martin G. Welch. Oxford: Archaeopress (BAR British Series 527), pp. 5561.Google Scholar
McArthur, J.M., Thirlwall, M.F., Engkilde, M., Zinsmeister, W.J. & Howarth, R.J. 1998. Strontium Isotope Profiles across K/ T Boundary Sequences in Denmark and Antarctica. Earth and Planetary Science Letters, 160: 179–92.CrossRefGoogle Scholar
McArthur, J.M, Howarth, R.J. & Bailey, T.R. 2001. Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr-Isotope Curve for 0–509 Ma and Accompanying Look-Up Table for Deriving Numerical Age. Journal of Geology, 109: 155–70.CrossRefGoogle Scholar
McKinley, J. 2010. Ringlemere, Kent (RFW-EX): Human Bone Report (unpublished Analysis Report for the British Museum).Google Scholar
Meier-Welser, I. 1975–1976. Pathologische Knochenveränderungen der merowingerzeitlichen Skelette von Anderten, Kreis Hannover. Die Kunde, 2627: 147– 216.Google Scholar
Millard, A.R. & Schroeder, H. 2010. ‘True British Sailors’: A Comment on the Origin of the Men of the Mary Rose. Journal of Archaeological Science, 37: 680–82.CrossRefGoogle Scholar
Millard, A.R., Roberts, C.A. & Hughes, S.S. 2005. Isotopic Evidence for Migration in Medieval England: The Potential for Tracking the Introduction of Disease. Society, Biology & Human Affairs, 70: 1516.Google Scholar
Montgomery, J. 2002. Lead and Strontium Isotope Compositions of Human Dental Tissues as an Indicator of Ancient Exposure and Population Dynamics (, University of Bradford, Bradford, UK).Google Scholar
Montgomery, J. 2010. Passports from the Past: Investigating Human Dispersals using Strontium Isotope Analysis of Tooth Enamel. Annals of Human Biology, 37: 325–46.CrossRefGoogle ScholarPubMed
Montgomery, J., Evans, J.A., Powlesland, D. & Roberts, C.A. 2005. Continuity or Colonization in Anglo-Saxon England? Isotope Evidence for Mobility, Subsistence Practice, and Status at West Heslerton. American Journal of Physical Anthropology, 126: 123–38.CrossRefGoogle ScholarPubMed
Montgomery, J, Evans, J.A. & Cooper, R.E. 2007. Resolving Archaeological Populations with Sr-Isotope Mixing Models. Applied Geochemistry, 22: 1502–14.CrossRefGoogle Scholar
Montgomery, J., Evans, J.A., Chenery, C.A. & Müldner, G. 2009a. Stable Isotope Analysis of Bone. In: Carver, M.O.H., Hills, C. & Scheschkewitz, J., eds. Wasperton: A Roman, British and Anglo-Saxon Community in Central England. Woodbridge: Boydell and Brewer, pp. 4849.Google Scholar
Montgomery, J., Müldner, G., Cook, G., Gledhill, A. & Ellam, R. 2009b. Isotope Analysis of Bone Collagen and Tooth Enamel. In: Lowe, C., ed. ‘Clothing for the Soul Divine’: Burials at the Tomb of St Ninian. Excavations at Whithorn Priory, 1957–67, Archaeology Report No.3. Edinburgh: Historic Scotland, pp. 6380.Google Scholar
Needham, S., Parfitt, K. & Varndell, G. 2006. The Ringlemere Cup: Precious Cups and the Beginnings of the Channel Bronze Age. London: British Museum, Publication 163.Google Scholar
Nowothnig, W. 1969. Das frühgeschichtliche Gräberfeld von Anderten, Kreis Hannover (früher Kreis Burgdorf). Neue Ausgrabungen und Forschung in Niedersachsen, 4: 202–11.Google Scholar
Pilet, C., Alduc-le Bagousse, A., Blondiaux, J., Buchet, L., Grévin, G. & Pilet-Lemière, J. 1990. Les necropolis de Giberville (Calvados) fin du Ve siècle après J.-C. Archeologie Mediévale, 22: 1189.Google Scholar
Pilet, C., Alduc-le Bagousse, A., Blondiaux, J., Buchet, L. & Pilet-Lemière, J. 1992. Le village de Sannerville, ‘Lirose’, fin de la période gauloise au VIIe siècle après J.-C. Archéologie Médiévale, 20: 1140.CrossRefGoogle Scholar
Pollard, A.M., Pellegrini, M. & Lee-Thorp, J.A. 2011. Technical Note: Some Observations on the Conversion of Dental Enamel δ18OP Values to δ18Ow to Determine Human Mobility. American Journal of Physical Anthropology, 145: 499504.CrossRefGoogle ScholarPubMed
Price, T.D., Grupe, G. & Schroter, P. 1998. Migration in the Bell Beaker Period of Central Europe. Antiquity, 72: 405–11.CrossRefGoogle Scholar
Price, T.D., Burton, J.H. & Bentley, R.A. 2002. The Characterization of Biologically Available Strontium Isotope Ratios for the Study of Prehistoric Migration. Archaeometry, 44: 117–35.CrossRefGoogle Scholar
Price, T.D., Knipper, C., Grupe, G. & Smrcka, V. 2004. Strontium Isotopes and Prehistoric Human Migration: The Bell Beaker Period in Central Europe. European Journal of Archaeology, 7: 940.CrossRefGoogle Scholar
Price, T.D., Ambrose, S.H., Bennike, P., Heinemeier, J., Noe-Nygaard, N., Petersen, E.B., Petersen, P.V. & Richards, M.P. 2007. New Information on the Stone Age Graves at Dragsholm, Denmark. Acta Archaeologica, 78: 193219.CrossRefGoogle Scholar
Puceat, E., Joachimski, M.M., Bouilloux, A., Monna, F., Bonin, A., Motreuil, S., Moriniere, P., Henard, S., Mourin, J., Dera, G. & Quesne, D. 2010. Revised Phosphate-Water Fractionation Equation Reassessing Paleotemperatures Derived from Biogenic Apatite. Earth and Planetary Science Letters, 298: 135–42.CrossRefGoogle Scholar
Randsborg, K. 1991. The 1st Millennium A.D. in Europe and the Mediterranean. Cambridge: Cambridge University Press.Google Scholar
Richards, J.D. 1992. Anglo-Saxon Symbolism. In: Carver, M.O.H., ed. The Age of Sutton Hoo: The Seventh Century in North-Western Europe. Woodbridge, Suffolk: The Boydell Press, pp. 131–47.Google Scholar
Richards, M, Smalley, K., Sykes, B. & Hedges, R. 1993. Archaeology and Genetics: Analysing DNA from Skeletal Remains. World Archaeology, 25: 1828.CrossRefGoogle ScholarPubMed
Richards, M.P., Fuller, B.T. & Hedges, R.E.M. 2001. Sulphur Isotopic Variation in Ancient Bone Collagen from Europe: Implications for Human Palaeodiet, Reidence Mobility, and Modern Pollutant Studies. Earth and Planetary Science Letters, 191: 185–90.CrossRefGoogle Scholar
Schwarcz, H.P., Gibbs, L. & Knyf, M. 1991. Oxygen Isotope Analysis as an Indicator of Place of Origin. In: Pfeiffer, S. & Williamson, R.F., eds. Snake Hill: An Investigation of a Military Cemetery from the War of 1812. Toronto: Dundurn Press, pp. 263–68.Google Scholar
Sicre, M.-A., Jacob, J., Ezat, U., Rousse, S., Kissel, C., Yiou, P., Eiríksson, J., Knudsen, K.L., Jansen, E. & Turon, J.-L. 2008. Decadal Variability of Sea Surface Temperatures off North Iceland over the Last 2000 Years. Earth and Planetary Science Letters, 268: 137–42.CrossRefGoogle Scholar
Smits, E., Millard, A.R., Nowell, G. & Pearson, D.G. 2010. Isotopic Investigation of Diet and Residential Mobility in the Neolithic of the Lower Rhine Basin. European Journal of Archaeology, 13: 531.CrossRefGoogle Scholar
Soulat, J. 2009. Le Matériel Archéologique de Type Saxon et Anglo-Saxon en Gaule Mérovingienne. Condé-sur-Noireau: Association Française d'Archéologie Mérovingienne, Tome 20.Google Scholar
Steuer, H. 1989. Archaeology and History: Proposals on the Structure of the Merovingian Kingdom. In: Randsborg, K., ed. The Birth of Europe: Archaeology and Social Development in the First Millennium A.D. Rome: L'Erma di Bretschneider, pp. 100–22.Google Scholar
The Anglo-Saxon Chronicle 1972, trans. & ed. by G.N. Garmonsway, revised ed. London: Dent & Sons.Google Scholar
Thomas, M.G., Stumpf, M.P.H. & Härke, H. 2008. Integration versus Apartheid in Post-Roman Britain: A Response to Pattison. Proceedings of the Royal Society B-Biological Sciences, 275 (1650): 2419–21.CrossRefGoogle Scholar
Todd, M. 1992. The Early Germans. Oxford: Blackwell.Google Scholar
Trickett, M.A., Budd, P., Montgomery, J. & Evans, J. 2003. An Assessment of Solubility Profiling as a Decontamination Procedure for the 87Sr/86Sr Analysis of Archaeological Human Skeletal Tissue. Applied Geochemistry, 18: 653–58.CrossRefGoogle Scholar
Tuross, N., Warinner, C., Kirsanow, K. & Kester, C. 2008. Organic Oxygen and Hydrogen Isotopes in a Porcine Controlled Dietary Study. Rapid Communications in Mass Spectrometry, 22: 1741–45.CrossRefGoogle Scholar
Tyrell, A. 2000. Skeletal Non-Metric Traits and the Assessment of Inter- and IntraPopulation Diversity: Past Problems and Future Potential. In: Cox, M. & Mays, S., eds. Human Osteology in Archaeology and Forensic Science. London: Greenwich Medical Media, pp. 289306.Google Scholar
von Carnap-Bornheim, C., Nosch, M.-L., Grupe, G., Mekota, A.-M. & Schweissing, M.M. 2007. Stable Strontium Isotopic Ratios from Archaeological Organic Remains from the Thorsberg Peat Bog. Rapid Communications in Mass Spectrometry, 21: 1541–45.CrossRefGoogle ScholarPubMed
Ward-Perkins, B. 2005. The Fall of Rome and the End of Civilisation. Oxford: Oxford University Press.Google Scholar
White, C., Longstaffe, F.J. & Law, K.R. 2004. Exploring the Effects of Environment, Physiology and Diet on Oxygen Isotope Ratios in Ancient Nubian Bones and Teeth. Journal of Archaeological Science, 31: 233–50.CrossRefGoogle Scholar
Wickham, C. 2009. The Inheritance of Rome: A History of Europe from 400 to 1000. London: Penguin.Google Scholar
Wood, I. 1990. The Channel from the 4th to the 7th Centuries AD. In: McGrail, S., ed. M. Celts, Frisians and Saxons. London: Council for British Archaeology, Report 71.Google Scholar
Wood, I. 1994. The Merovingian Kingdoms 450–751. London & New York: Longman.Google Scholar
Wood, I. 1997. Before and After the Migration to Britain. In: Hines, J., ed. The Anglo-Saxons from the Migration Period to the 8th Century: An Ethnographic Perspective. Woodbridge: The Boydell Press, pp. 4164.Google Scholar
Woolgar, C., Serjeantson, D. & Waldron, T. 2006. Food in Medieval England: Diet and Nutrition. Oxford: Oxford University Press.CrossRefGoogle Scholar