Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T07:14:41.408Z Has data issue: false hasContentIssue false

Ancient tuberculosis and lipid chemistry – odd bedfellows!

Published online by Cambridge University Press:  25 January 2017

J.E. Redman*
Affiliation:
Department of Chemistry, University of Newcastle, UK
M.I. Stewart*
Affiliation:
Dyson Perrins Laboratory, University of Oxford, UK
A.M. Gernaey*
Affiliation:
Fossil Fuels and Environmental Geochemistry, University of Newcastle, UK

Abstract

Tuberculosis (TB), the disease caused by Mycobacterium tuberculosis, has afflicted mankind for millennia. Currently, the diagnosis of TB from archaeological specimens relies on the identification of bone changes. This method is problematic, since the bone changes seen in TB are not exclusive to the disease. Here, we examine the state-of-the-art of ancient TB diagnosis using the biomarker approach. The development of biomarkers for the detection of ancient TB will provide a reliable means of diagnosis and provide archaeology with a useful tool for the investigation of the disease in archaeological populations.

La tuberculose (TB), maladie causée par le myobacterium tuberculosis, afflige l'humanité depuis des millénaires. Actuellement, la diagnose de TB en archéologie repose sur l'identification de changements osseux des squelettes. Cette méthode est douteuse, car ces modifications accompagnant la TB ne sont pas exclusivement liées à cette maladie. Dans cet article, nous examinons la meilleure méthode à ce jour pour diagnostiquer une TB ancienne, à savoir la méthode des marqueurs biologiques. Le développement de ces marqueurs pour la détection de TB ancienne nous donnera un moyen aûr de diagnose et fournira à l'archéologie un outil utile pour déterminer la maladie dans les populations archéologiques.

Zusammenfassung

Zusammenfassung

Tuberkulose (TB), die durch Myobacterium tuberculosis verursachte Erkrankung, hat die Menschheit seit Jahrtausenden gepeinigt. Bislang beruht die Feststellung von TB an archäologischem Skelettmaterial auf der Diagnose von Veränderungen an der Knochensubstanz. Diese Methode ist jedoch problematisch, da derartige Knochenveränderungen nicht allein für TB charakteristisch sind. In diesem Beitrag behandeln wir den Forschungsstand der Identifizierung alter TB anhand des Biomarker-Verfahrens. Die Entwicklung von Biomarkern wird für die Erkennung alter TB ein zuverlässiges Diagnoseverfahren liefern und die Archäologie mit einem nützlichen Hilfsmittel zur Erforschung dieser Krankheit in archäologischen Populationen versehen.

Type
Articles
Copyright
Copyright © 2002 Sage Publications 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baron, H., Hummel, S. and Hermann, B., 1996. Mycobacterium tuberculosis complex DNA in ancient human bones. Journal of Archaeological Science 23:667671.Google Scholar
Bello, S., Signoli, M., Maczel, M. and Dufour, O., 1999. Evolution of mortality due to tuberculosis in France (18th-20th centuries). In Palfi, G., Dutour, O., Deak, J. and Hutas, I. (eds), Tuberculosis, Past and Present: 95106. Golden Book Publishers Ltd, Tuberculosis Foundation.Google Scholar
Bhatti, N., Law, M.R., Morris, J.K., Haliday, R. and Moore-Gillon, J., 1995. Increasing incidence of tuberculosis in England and Wales: a study of the likely causes. British Medical Journal 310:967969.CrossRefGoogle Scholar
Brennan, P.J. and Nikaido, H., 1995. The envelope of mycobacteria. Annual Reviews in Biochemistry 64:2963 Google Scholar
Chalke, H.D., 1962. The impact of tuberculosis in literature, history and art. Medical History 74:8395.Google Scholar
Chan, J., Tain, Y., Tanaka, K.E., Tsang, M.S., Yu, K., Carron, P.S.D., Krees, Y., Teielbaum, R. and &omit, B.R., 1996. Effects of protein calorie malnutrition on tuberculosis in mice. Proceedings of the National Academy of Sciences, USA, 93:1485714861.Google Scholar
Connell, N.D. and Nikaido, H., 1994. Membrane permeability and transport In Mycobacterium tuberculosis. In Bloom, B.R. (ed.), Tuberculosis: Pathogenesis, Protection and Control: 333352. Washington, DC: American Society for Microbiology.Google Scholar
Cule, J., 1999. Medical history and tuberculosis. In Palfi, G., Dutour, O., Deak, J. and Hutas, I. (eds), Tuberculosis, Past and Present: 3138. Golden Book Publishers Ltd, Tuberculosis Foundation.Google Scholar
Dalovisio, J.R., Montenegro-James, S., Kemmerly, S.A., Genre, C.F., Chambers, R., Greer, D., Pankey, G.A., Failla, D.M., Haydel, K.G., Hutchinson, L., Lindley, M.F., Nunez, B.M., Praba, A., Eisenach, K.D. and Cooper, E.S., 1996. Comparison of the amplified Mycobacterium tuberculosis (MTB) direct-test, Amplicor MTB PCR, and IS6110 PCR for the detection of MTB in respiratory specimens. Clinical Infectious Diseases 23:10991106.CrossRefGoogle ScholarPubMed
Davies, R.P.O., Tocque, K., Bellis, M.A., Rmmington, T.N. and Davies, P.D.O., 1999. Historical declines in tuberculosis: improving social conditions or natural selection. In Palfi, G., Dutour, O., Deak, J. and Hutas, I. (eds), Tuberculosis, Past and Present: 8994. Golden Book Publishers Ltd, Tuberculosis Foundation.Google Scholar
Debriel, D., Couderc, F., Riegel, P., Jehl, F. and Minck, R., 1992. High performance liquid chromatography of corynemycolic acids as a tool in the identification of Corynebacterium species and related organisms. Journal of Clinical Microbiology 30:14071417 Google Scholar
Dolin, P.J., Raviglione, M.C. and Komi, A., 1994. Bulletin of the World Health Organisation 72:213220.Google Scholar
Eisenach, K.D., Cave, M.D., Bates, J. and Crawford, J., 1991. Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. Journal of Infectious Diseases 161:977981.Google Scholar
Evans, CC., 1994. Historic background. In Davies, P.D.O. (ed.), Clinical Tuberculosis: 4657. London: Chapman and Hall Medical.Google Scholar
Ewald, P.W., 1999. Using evolution as a tool for controlling infectious diseases. In Trevathan, W.R., Smith, E.O. and McKenna, J.J. (eds), Evolutionary Medicine: 245269. Oxford: Oxford University Press.CrossRefGoogle Scholar
Faerman, M., Jankauskas, R., Gorski, A., Bercovier, H. and Greenblatt, C.L., 1999. Detecting Mycobacterium tuberculosis DNA in medieval skeletal remains from Lithuania. In Palfi, G., Dutour, O., Deak, J. and Hutas, I. (eds), Tuberculosis, Past and Present: 371376. Golden Book Publishers Ltd, Tuberculosis Foundation.Google Scholar
Falkinham, J.O., III, 1996. Epidemiology of infection by nontuberculous mycobacteria. Clinical Microbiology Reviews. 9:177215.Google Scholar
Ferlinz, R., 1999. Definition, epidemiology and therapeutic approaches to tuberculosis in Germany. In Palfi, G., Dutour, O., Deak, J. and Hutas, I. (eds), Tuberculosis, Past and Present: 115126. Golden Book Publishers Ltd, Tuberculosis Foundation.Google Scholar
Gernaey, A.M., Minnikin, D.E., Copley, M.S., Power, J.J., Ahmed, A.M.S., Dixon, R.A., Roberts, C.A., Robertson, D.J., Nolan, J. and Chamberlain, A., 1998. Detecting ancient tuberculosis. Internet Archaeology 5: http:/intarch.ac.uk/journal/issuesgernaey_toc.html.CrossRefGoogle Scholar
Gernaey, A.M., Minnikin, D.E., Copley, M.S., Ahmed, A.M.S., Robertson, D.J., Nolan, J. and Chamberlain, A.T., 1999. Correlation between occurrence of mycolic acids with tuberculosis in an archaeological population. In Palfi, G., Dutour, O., Deak, J. and Hutas, I. (eds), Tuberculosis, Past and Present: 275284. Golden Book Publishers Ltd, Tuberculosis Foundation.Google Scholar
Gernaey, AM. and Santos, A.L., in prep. (a). The Coimbra connection: the value of mycolic acid biomarkers for ancient tuberculosis.Google Scholar
Gernaey, A.M., Santos, A.L., Dixon, R.A. and Donoghue, H.D., in prep. (b). Comparison between IS6110 and mycolic acids for diagnosis of ancient tuberculosis.Google Scholar
Gernaey, A.M., Donoghue, H.D., Rothschild, B., Martin, L., Spigelman, M., Minnikin, D.E., Redman, I.E. and Mallet, A., in prep. (c). Bovids may hold secrets of ancient disease.Google Scholar
Haas, F. and Haas, S.S., 1999. Origins and spread of Mycobacterium tuberculosis in the Mediterranean basin. In Palfi, G., Dutour, O., Deak, J. and Hutas, I. (eds), Tuberculosis, Past and Present: 429433. Golden Book Publishers Ltd, Tuberculosis Foundation.Google Scholar
Hellyer, T.J., Desjardin, L.E., Beggs, M.L., Yang, Z., Eisenach, K.D., Cave, M.D., Bates, J.H., Assaf, M.K. and Crawford, J.T., 1998. 1S6110 homologs are present in multiple copies in mycobacteria other than tuberculosis-causing mycobacteria (Letter). Journal of Clinical Microbiology 36:853854.Google Scholar
Mainali, E.S. and Mcmurray, D.N., 1998. Adoptive transfer of resistance to pulmonary tuberculosis in guinea pigs altered by protein deficiency. Nutrition Research 18:309317.Google Scholar
Mcgrath, J.W., 1988. Social networks of disease spread in the lower Illinois valley: a simulation approach. American Journal of Physical Anthropology 77:483496.Google Scholar
Minnikin, D.E., Dobson, G., Goodfellow, M., Draper, P. and Magnusson, M., 1985. Quantitative comparison of the mycolic and fatty acid compositions of Mycobacterium leprae and Mycobacterium gordonae. Journal of General Micro-biology 131:20132021.Google Scholar
Nerlich, A.G., Haas, C.J., Zink, A., Szeimies, U. and Hagedon, H.G., 1997. Molecular evidence for tuberculosis in an Egyptian mummy. Lancet 350:1404.CrossRefGoogle Scholar
Opravil, M., 1997. Epidemiological and clinical aspects of mycobacterial infection. Infection 25:5659.CrossRefGoogle Scholar
Ortner, D.J. and Putschar, W.G., 1981. Identification of Pathological Conditions in Human Skeletal Remains. Washington, DC: Smithsonian Institution Press.Google Scholar
Roberts, C. and Manchester, K., 1995. The Archaeology of Disease. Stroud: Sutton Publishing.Google Scholar
Rothschild, B. and Rothschild, C., 1999. Evolution of osseous / radiologic signs of tuberculosis. In Palfi, G., Dutour, O., Deak, J. and Hutas, I. (eds), Tuberculosis, Past and Present: 293300. Golden Book Publishers Ltd, Tuberculosis Foundation.Google Scholar
Salo, W.L., Aufderheide, A.C., Buikstra, J. and Holcomb, T.A., 1994. Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proceedings of the National Academy of Sciences USA 91:20912094.Google Scholar
Taylor, G.M., Crossey, M., Saldanha, J. and Waldron, T., 1996. DNA from Mycobacterium tuberculosis identified in medieval human skeletal remains using polymerase chain reaction. Journal of Archaeological Sciences 23:789798.Google Scholar
Taylor, G.M., Goyal, M., Legge, A.L., Shaw, R.J. and Young, D., 1999. Genotypic analysis of Mycobacterium tuberculosis from medieval remains. Microbiology UK 145:899904.Google Scholar
Wilson, G.S. and Miles, A.A., 1946. Topley and Wilson's Principles of Bacteriology and Immunity, vol. 2, 3rd edn. London: Edward Arnold.Google Scholar