Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T20:48:44.374Z Has data issue: false hasContentIssue false

A ξ-vector formulation of anisotropic phase-field models: 3D asymptotics

Published online by Cambridge University Press:  26 September 2008

A. A. Wheeler
Affiliation:
Faculty of Mathematical Studies, University of Southampton, Highfield, Southampton SO17 1BJ, UK
G. B. McFadden
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

Abstract

In this paper we present a new formulation of a large class of phase-field models, which describe solidification of a pure material and allow for both surface energy and interface kinetic anisotropy, in terms of the Hoffman–Cahn ξ-vector. The ξ-vector has previously been used in the context of sharp interface models, where it provides an elegant tool for the representation and analysis of interfaces with anisotropic surface energy. We show that the usual gradient-energy formulations of anisotropic phase-field models are expressed in a natural way in terms of the ξ-vector when appropriately interpreted. We use this new formulation of the phase-field equations to provide a concise derivation of the Gibbs–Thomson–Herring equation in the sharp-interface limit in three dimensions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Kessler, D. A., Koplik, J. & Levine, H. 1988 Pattern selection in fingered growth phenomena. Advances in Physics 37, 255.CrossRefGoogle Scholar
[2]Wheeler, A. A., Murray, B. T. & Schaefer, R. J. 1993 Computation of dendrites using a phase field model. Physica D 66, 243262.Google Scholar
[3]Kobayashi, R. 1992 Simulations of three dimensional dendrites. In Pattern Formation in Complex Dissipative Systems (Kai, S., ed.), pp. 121128. World Scientific, Singapore.Google Scholar
[4]Kobayashi, R. 1993 Modeling and numerical simulations of dendritic crystal growth. Physica D 63, 410423.Google Scholar
[5]McFadden, G. B., Wheeler, A. A., Braun, R. J., Coriell, S. R. & Sekerka, R. F. 1993 Phase-field models for anisotropic interfaces. Phys. Rev. E 48, 20162024.Google ScholarPubMed
[6]Kobayashi, R. 1994 A numerical approach to three-dimensional dendritic solidification. Experimental Mathematics 3, 5981.CrossRefGoogle Scholar
[7]Hoffman, D. W. & Cahn, J. W. 1972 A vector thermodynamics for anisotropic surfaces – I. Fundamentals and applications to plane surface junctions. Surface Science 31, 368388.CrossRefGoogle Scholar
[8]Cahn, J. W. & Hoffman, D. W. 1974 A vector thermodynamics for anisotropic surfaces – II. Curved and faceted surfaces. Acta Met. 22, 12051214.CrossRefGoogle Scholar
[9]Taylor, J. E., Cahn, J. W. & Handwerker, C. A. 1992 Geometric models of crystal growth. Acta Metall. Mater. 40, 14431474.CrossRefGoogle Scholar
[10]Taylor, J. E. 1992 Mean curvature and weighted mean curvature. Acta Metall. Mater. 40, 14751485.CrossRefGoogle Scholar
[11]Taylor, J. E. & Cahn, J. W. 1994 Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Stat. Phys., 77, 183197.CrossRefGoogle Scholar
[12]Herring, C. 1952 The use of classical macroscopic concepts in surface-energy problems. In Structure and Properties of Solid Surfaces (Gomer, R. & Smith, C. S., Eds), pp. 581. University of Chicago.Google Scholar
[13]Langer, J. S. 1986 Models of pattern formation in first-order phase transitions. In Directions in Condensed Matter Physics (Grinstein, G. & Mazenko, G., eds), pp. 165186. World Scientific, Philadelphia.CrossRefGoogle Scholar
[14]Caginalp, G. & Fife, P. C. 1986 Phase-field methods for interfacial boundaries. Phys. Rev. B 34, 49404943.CrossRefGoogle Scholar
[15]Caginalp, G. 1986 The role of microscopic anisotropy in the macroscopic behavior of a phase boundary. Ann. Phys. 172, 136155.CrossRefGoogle Scholar
[16]Cahn, J. W. & Kikuchi, R. 1985 Transition layer in a lattice gas model of a solid-melt interface. Phys. Rev. B 31, 43004304.CrossRefGoogle Scholar
[17]Rubinstein, J., Sternberg, P. & Keller, J. B. 1989 Fast reaction, slow diffusion, and curve shortening. SIAM J. Appl. Math. 49, 116133.CrossRefGoogle Scholar
[18]Modica, L. 1987 The gradient theory of phase transitions and the minimal interface criterion. Arch. Rat. Mech. Anal. 98, 123142.CrossRefGoogle Scholar
[19]Kohn, R. V. & Sternberg, P. 1989 Local minimizers and singular perturbations. Proc. Roy. Soc. Edinburgh 111A, 6984.CrossRefGoogle Scholar
[20]Owen, N. C. & Sternberg, P. 1991 Nonconvex variational problems with anisotropic perturbations. Non. Anal. Th. Meth. & Appl. 16, 705719.CrossRefGoogle Scholar
[21]Fonseca, I. & Rybka, P. 1992 Relaxation of multiple integrals in the space BV(Ω, Rp). Proc. Roy. Soc. Edinburgh 121A, 321348.CrossRefGoogle Scholar
[22]Elliott, C. M. & Schätzle, R. 1996 The limit of the anisotropic double-obstacle Allen–Cahn equation. Royal Society of Edinburgh (to appear).CrossRefGoogle Scholar
[23]Elliott, C. M. & Schätzle, R. 1996 The limit of the fully anisotropic double-obstacle Allen–Cahn equation in the non-smooth case. SIAM J. Math. Anal, (to appear).CrossRefGoogle Scholar
[24]Montroll, E. 1972 Nonlinear rate processes, especially those involving competitive processes. In Statistical Mechanics (Rice, S., Freed, K. F. & Light, J. C., Eds), pp. 6991. University of Chicago.Google Scholar
[25]Caginalp, G. 1989 Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. Phys. Rev. A 39, 58875896.CrossRefGoogle ScholarPubMed
[26]Weatherburn, C. E. 1927 Differential Geometry of Three Dimensions. Cambridge University Press.Google Scholar
[27]Aris, R. 1962 Vectors, Tensors and the Basic Equations of Fluid Mechanics. Dover.Google Scholar