Published online by Cambridge University Press: 18 September 2018
This study investigates the phenomenon of targeted energy transfer (TET) from a linear oscillator to a nonlinear attachment behaving as a nonlinear energy sink for both transient and stochastic excitations. First, the dynamics of the underlying Hamiltonian system under deterministic transient loading is studied. Assuming that the transient dynamics can be partitioned into slow and fast components, the governing equations of motion corresponding to the slow flow dynamics are derived and the behaviour of the system is analysed. Subsequently, the effect of noise on the slow flow dynamics of the system is investigated. The Itô stochastic differential equations for the noisy system are derived and the corresponding Fokker–Planck equations are numerically solved to gain insights into the behaviour of the system on TET. The effects of the system parameters as well as noise intensity on the optimal regime of TET are studied. The analysis reveals that the interaction of nonlinearities and noise enhances the optimal TET regime as predicted in deterministic analysis.